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This dissertation describes a new approach to the automatic extraction of semantic map-

pings (transfer rules) for rule-based machine translation. This approach continues previous

work in combining HPSG rule-based grammars, whose precise bidirectional implementation

facilitates deep semantic analysis of sentences and the enumeration of grammatical realiza-

tions of semantic representations, and data-driven techniques of machine translation, whose

automatic extraction of knowledge and statistical inference allow models to be quickly built

from bitexts and to rank extracted patterns by their frequency. I define two new methods for

bilingually aligning semantic fragments (or semantic subgraphs) and a heuristic strategy

for aligning nodes between source and target subgraphs, which together allow me to design

transfer systems that meet, and at times exceed, the translation coverage and quality of the

prior state of the art with a significantly reduced dependence on idiosyncratic language-pair

definitions (i.e., improved language independence). These improvements are made possible

by a number of semantic operations, either designed or implemented by me and defined

within this dissertation, that fully model the semantic representations and allow for inspec-

tion and transformation as graph operations. I apply my methods to the task of translating

Japanese sentences into English—a typologically distant language pair.



TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Translating Human Language . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Machine Translation using Semantic Representations . . . . . . . . . . . . . 6
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2: DELPH-IN Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Philosophical Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Structural Semantic Preliminaries and Terminology . . . . . . . . . . . . . . 19
2.3 Underspecified Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Visual Presentation of DELPH-IN Semantics . . . . . . . . . . . . . . . . . . 24
2.5 SEM-I: The Semantic Interface . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 MRS: Minimal Recursion Semantics . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 RMRS: Robust Minimal Recursion Semantics . . . . . . . . . . . . . . . . . 31
2.8 EDS: Elementary Dependency Structures . . . . . . . . . . . . . . . . . . . . 31
2.9 DM: Bilexical Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 DMRS: Dependency Minimal Recursion Semantics . . . . . . . . . . . . . . 34
2.11 Summary of DELPH-IN Representations . . . . . . . . . . . . . . . . . . . . 36
2.12 Comparison to Other Frameworks . . . . . . . . . . . . . . . . . . . . . . . . 36

i



2.13 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 3: Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Rule-based Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Statistical and Neural Machine Translation . . . . . . . . . . . . . . . . . . . 42
3.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4: System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Translation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Pipeline Information Management . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Translation Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5: Semantic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 MRS to DMRS Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 DMRS to MRS Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Semantic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Semantic Graph Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 PENMAN Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 Subgraph Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.7 DMRS Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Chapter 6: Bilingual Semantic Subgraph Alignment . . . . . . . . . . . . . . . . . 96
6.1 Bilingually Aligned Predicate Phrases . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Top-Down Subgraph Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Filtering Subgraphs and Subgraph Pairs . . . . . . . . . . . . . . . . . . . . 111
6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

ii



Chapter 7: Transfer Grammar Augmentation . . . . . . . . . . . . . . . . . . . . . 116
7.1 The LOGON Transfer Machinery . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Challenges and Strategies in Building Transfer Grammars . . . . . . . . . . 121
7.3 Converting Subgraphs to Transfer Rules . . . . . . . . . . . . . . . . . . . . 124
7.4 Transfer Grammar Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 8: Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.1 Data Sources and Divisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2 Basic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.3 Analysis of Parsing Performance . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.4 Analysis of Generation Performance . . . . . . . . . . . . . . . . . . . . . . . 151
8.5 The Bisem Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Chapter 9: Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.2 Pipeline Parameters for Transfer-based Systems . . . . . . . . . . . . . . . . 158
9.3 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.4 Moses Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.5 Haugereid and Bond Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.6 LPA: Bilingually-aligned Predicate Phrases . . . . . . . . . . . . . . . . . . . 164
9.7 SGA: High-frequency Coincident Subgraphs . . . . . . . . . . . . . . . . . . 170
9.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Chapter 10: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.1 Baseline Development Results . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.2 LPA Development Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.3 SGA Development Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.4 Combined Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.5 Translation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

iii



Chapter 11: Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
11.1 Translation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
11.2 Comparing Systems by Automatic Quality Estimations . . . . . . . . . . . . 195
11.3 SGA Subgraph Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
11.4 Semantic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
11.5 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
11.6 Translation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Chapter 12: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.1 Methodological and Artifactual Contributions . . . . . . . . . . . . . . . . . 219
12.2 Next Steps and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 222
12.3 Closing Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Appendix A: Setting Up the Translation Environment . . . . . . . . . . . . . . . . . 245
A.1 Moses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
A.2 ERG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Appendix B: Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

iv



LIST OF FIGURES

Figure Number Page

1.1 Vauquois triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Vauquois inverted funnel with a very long spout . . . . . . . . . . . . . . . . 8

2.1 MRS graph view for The dog sleeps. . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 MRS graph view for Every dog chased some cat. . . . . . . . . . . . . . . . . 25
2.3 Variable hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 MRS fragments of the large and gentle dog sleeps . . . . . . . . . . . . . . . 32
2.5 DMRS fragments of the large and gentle dog sleeps . . . . . . . . . . . . . . 35
2.6 Ordering of information density among MRS, DMRS, EDS, and DM . . . . 37

4.1 Simplified translation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Pipeline fan-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Expanded view of the parsing component . . . . . . . . . . . . . . . . . . . . 50
4.4 Monolingual MTR in JaEn for normalizing alternate orthographies . . . . . 53
4.5 Hand-written MTR for the idiomatic 嘘をつく uso-wo tsuku “tell a lie [lit:

breathe a lie]” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Building the transfer pair store . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Expanded view of the transfer component . . . . . . . . . . . . . . . . . . . 55
4.8 Expanded view of the generation component . . . . . . . . . . . . . . . . . . 56
4.9 Expanded view of the selection component: First method . . . . . . . . . . . 57
4.10 Expanded view of the selection component: Oracle method . . . . . . . . . . 57
4.11 First-selection of translation hypotheses . . . . . . . . . . . . . . . . . . . . 57

5.1 MRS for The dog whose tail is long barked. . . . . . . . . . . . . . . . . . . . 62
5.2 DMRS for The dog whose tail is long barked. . . . . . . . . . . . . . . . . . . 63
5.3 Alternative DMRS for The dog whose tail is long barked. . . . . . . . . . . . 63
5.4 Before and after the string transformation for structural isomorphism checking 71
5.5 Multiply-rooted DMRS for The southbound train departed. . . . . . . . . . . 72

v



5.6 DMRS subgraphs showing non-scopal modification . . . . . . . . . . . . . . 75
5.7 DMRS subgraphs comparing (a) scopal and (b) non-scopal modification . . . 75
5.8 Multiply-rooted DMRS for The angry farmer fanatically chased the rabbit . 80
5.9 Rooted DMRS traversal order with inverted links . . . . . . . . . . . . . . . 80
5.10 DMRS triples for the dog whose tail is long barked . . . . . . . . . . . . . . . 84
5.11 PENMAN serialization for the dog whose tail is long barked . . . . . . . . . . 85
5.12 ID-normalized PENMAN serialization for the dog whose tail is long barked . 85
5.13 DMRS graph for Pierre Vinken, 61 years old . . . . . . . . . . . . . . . . . . 91
5.14 Removing implicit quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.15 Simplifying predications with constant values . . . . . . . . . . . . . . . . . 93
5.16 Converting binary predications to links . . . . . . . . . . . . . . . . . . . . . 94
5.17 Final simplified DMRS graph . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Original and simplified DMRS graphs for エチオピア中部に位置する . . . . 98
6.2 Original and simplified DMRS graphs for located in central Ethiopia . . . . . 99
6.3 Example alignment for エチオピア中部 → central Ethiopia . . . . . . . . . 102
6.4 Example subgraph pair extracted using the alignment in Fig. 6.3 . . . . . . . 102
6.5 Example Japanese subgraphs enumerated for Fig. 6.1a . . . . . . . . . . . . 104
6.6 Example English subgraphs enumerated for Fig. 6.2a . . . . . . . . . . . . . 105
6.7 Example prefilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.8 Example ϕ2 values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1 TDL definition of mrs_transfer_rule in JaEn . . . . . . . . . . . . . . . . 118
7.2 TDL definition of monotonic_mtr and monotonic_omtr in JaEn . . . . . . . 119
7.3 TDL definition of optional_mtr in JaEn . . . . . . . . . . . . . . . . . . . . 119
7.4 Bilingual variable binding for 恐ろしい夢を⾒る osoroshii yume-wo miru

“have a terrible dream” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.5 Bilingual variable binding for すぐ医者に電話する sugu isha-ni denwa suru

“call the doctor right away” . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.6 Subgraphs and MTR for 太陽 taiyou → sun . . . . . . . . . . . . . . . . . . 130
7.7 Subgraphs and MTR for ⾯⽩い⼿紙 omoshiroi tegami → interesting letter . 130
7.8 Subgraphs and MTR for 濁⽔ dakusui → murky water . . . . . . . . . . . . 131

8.1 Number of sentences per token-count. . . . . . . . . . . . . . . . . . . . . . . 140
8.2 Parsing coverage for each sentence length. . . . . . . . . . . . . . . . . . . . 148

vi



8.3 Average per-item parsing time for each sentence length. . . . . . . . . . . . . 149
8.4 Average per-item parsing memory usage each sentence length. . . . . . . . . 150

9.1 Correct subgraph pairing for 海王星 Kaiousei “Neptune” . . . . . . . . . . . 171
9.2 Incorrect subgraph pairings for 海王星 Kaiousei “Neptune” . . . . . . . . . . 171

10.1 Coverage, All-BLEU, and Intersective-BLEU results for all LPA configurations 183
10.2 Coverage, All-BLEU, and Intersective-BLEU results for all SGA configurations186
10.3 Oracle Translations for the top configurations of LPA . . . . . . . . . . . . . 189
10.4 Oracle Translations for the top configurations of SGA . . . . . . . . . . . . . 190
10.5 Translations from LPA-O2 and SGA-O5 . . . . . . . . . . . . . . . . . . . . 190

11.1 LPA and SGA overlap with H&B and the most common translations . . . . 193
11.2 Cross overlap between LPA and SGA translations . . . . . . . . . . . . . . . 195
11.3 Intersective-First and Intersective-Oracle scores for BLEU and METEOR over

all LPA and SGA configurations . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.4 Errors in transferred MRSs . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.5 Transfer ambiguity in LPA and SGA . . . . . . . . . . . . . . . . . . . . . . 207
11.6 Percentage of transfer inputs that hit the timeout or memory limit . . . . . 208
11.7 Realization ambiguity and timeouts . . . . . . . . . . . . . . . . . . . . . . . 209
11.8 Partial transfers and lexical gaps . . . . . . . . . . . . . . . . . . . . . . . . 210
11.9 Experiential versus progressive errors in translation . . . . . . . . . . . . . . 212
11.10Wrong sense of する suru in translation . . . . . . . . . . . . . . . . . . . . 213
11.11Literal versus idiomatic errors in translation . . . . . . . . . . . . . . . . . . 213
11.12Collocation mismatch error in translation . . . . . . . . . . . . . . . . . . . . 214
11.13DMRS for 彼は⾃分の過失の責任を認めた . . . . . . . . . . . . . . . . . . 215
11.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

B.1 item Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B.2 p-info Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B.3 p-result Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
B.4 x-info Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
B.5 x-result Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
B.6 g-info Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
B.7 g-result Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

vii



LIST OF TABLES

Table Number Page

2.1 Feature matrix of the prominent *MRS variants . . . . . . . . . . . . . . . . 37

5.1 Nodes and surface pointers for machine translation . . . . . . . . . . . . . . 77
5.2 Nodes and surface pointers for isn’t in Kim isn’t a student and unwound in

Kim unwound the string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Default and obligatory quantifiers in the ERG and Jacy . . . . . . . . . . . . 92

6.1 Basic statistics of enumerated subgraphs . . . . . . . . . . . . . . . . . . . . 108
6.2 Bilingual contingency table . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Data splits for the Tanaka Corpus . . . . . . . . . . . . . . . . . . . . . . . . 135
8.2 Data splits for the Kyoto Corpus . . . . . . . . . . . . . . . . . . . . . . . . 136
8.3 Data splits for the Japanese WordNet Corpus . . . . . . . . . . . . . . . . . 137
8.4 Data splits for all corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.5 Sentence and token counts for the corpora . . . . . . . . . . . . . . . . . . . 139
8.6 Number of sentences with a maximum of 70, 35, or 20 tokens . . . . . . . . . 141
8.7 Duplicate sentences in training data . . . . . . . . . . . . . . . . . . . . . . . 143
8.8 Duplicate sentences in development data . . . . . . . . . . . . . . . . . . . . 143
8.9 Duplicate sentences in test data . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.10 Duplicates of testing data in the training and development data . . . . . . . 145
8.11 Parsing constraints for ACE . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.12 Machine information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.13 Generation performance on the development data . . . . . . . . . . . . . . . 153
8.14 Bisem counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.1 ACE parameters for parsing, transfer, and generation . . . . . . . . . . . . . 159
9.2 Basic settings for the moses baseline . . . . . . . . . . . . . . . . . . . . . . 162
9.3 Extracted H&B rule counts by specified predicate counts . . . . . . . . . . . 164
9.4 Dropped predicates for linearization . . . . . . . . . . . . . . . . . . . . . . . 165

viii



9.5 Extracted LPA rule counts by subgraph order . . . . . . . . . . . . . . . . . 167
9.6 Extracted LPA isomorphic rule counts by subgraph order . . . . . . . . . . . 168
9.7 Experimental configurations for LPA . . . . . . . . . . . . . . . . . . . . . . 169
9.8 Dropped predicates for enumeration . . . . . . . . . . . . . . . . . . . . . . . 172
9.9 Subgraph prefilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.10 SGA subgraph pair counts by subgraph order . . . . . . . . . . . . . . . . . 175
9.12 Extracted SGA isomorphic subgraph pair counts . . . . . . . . . . . . . . . . 177
9.13 Experimental configurations for SGA . . . . . . . . . . . . . . . . . . . . . . 178

10.1 H&B transfer and generation coverage for the development set . . . . . . . . 182
10.2 Moses evaluation results over the development data . . . . . . . . . . . . . . 182
10.3 H&B evaluation results over the development data . . . . . . . . . . . . . . 182
10.4 Coverage and All-BLEU for top LPA configurations . . . . . . . . . . . . . . 184
10.5 Top LPA configurations’ intersective evaluation results . . . . . . . . . . . . 185
10.6 Coverage and All-BLEU for top SGA configurations . . . . . . . . . . . . . . 186
10.7 Top SGA configurations’ intersective evaluation results . . . . . . . . . . . . 187
10.8 Coverage and All-BLEU for testing configurations . . . . . . . . . . . . . . . 188
10.9 Evaluation results over the intersection of test translations . . . . . . . . . . 189

11.1 System-level overlap with Moses and the reference translation . . . . . . . . 196
11.2 Difference in normalized BLEU, NIST, and METEOR between Moses and my

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.3 Graph orders and numbers of structural variants . . . . . . . . . . . . . . . . 202
11.4 Percentage of subgraphs with the given structure . . . . . . . . . . . . . . . 203
11.5 Most frequent order-3 structures, with roles, in Jacy and the ERG . . . . . . 203

ix



LIST OF ALGORITHMS

1 Converting MRS EPs to DMRS Nodes . . . . . . . . . . . . . . . . . . . . . 61

2 Finding the indices of representative EPs . . . . . . . . . . . . . . . . . . . . 61

3 Converting MRS EPs and qeqs to DMRS Links . . . . . . . . . . . . . . . . 65

4 Converting from DMRS to MRS . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Determine if a DMRS link is to-oriented . . . . . . . . . . . . . . . . . . . . 73

6 Converting DMRS nodes and links to triples . . . . . . . . . . . . . . . . . . 83

7 Extracting DMRS subgraphs from a predicate list . . . . . . . . . . . . . . . 87

8 Extracting DMRS subgraphs from a restricted graph traversal . . . . . . . . 89

9 Extracting DMRS subgraphs using predicate alignments . . . . . . . . . . . 101

10 Pairing DMRS subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

x



GLOSSARY

ABSTRACT REPRESENTATION: a linguistic representation that uses coarse-grained and
generalized category labels; cf. concrete representation

ABSTRACT PREDICATE: a semantic predicate that does not correspond directly to a
surface token (e.g., compound for forming compound phrases, or neg for generalizing
over a variety of negation strategies); cf. surface predicate

ARBORESCENCE: a directed, rooted tree

ARGUMENT LINKS: DMRS links corresponding to MRS role arguments; cf. non-argument
links

BILINGUALLY CORRELATED: when a source and target representation are empirically
likely to be translationally equivalent

BILINGUALLY ISOMORPHIC: when a source and target representation are structurally
isomorphic

BILINGUAL VARIABLE BINDING: the coindexation of variables in source and target rep-
resentations

BOUND VARIABLE: a variable bound by a quantifier

BISEM: a bilingual semantic corpus

CHARACTERISTIC VARIABLE: see intrinsic variable

CHARACTERIZATION: see surface alignment

COMPOSITIONAL REPRESENTATION: a representation that is monotonically built up from
smaller pieces that are each licensed by an input token; cf. non-compositional rep-
resentation
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CONCRETE REPRESENTATION: a representation that is fully specified for an application
or domain-specific usage; cf. abstract representation

CONNECTEDNESS: the graph property of having an undirected path between any two
nodes in the graph

DELPH-IN SEMANTICS: the semantic framework used by DELPH-IN grammars and re-
sources, most notably Minimal Recursion Semantics (MRS; Copestake et al., 2005)

DEPENDENT: in semantic dependency representations, the side of a relation that corre-
sponds to a functor’s argument; cf. head

DISTINGUISHED VARIABLE: see intrinsic variable

ELEMENTARY PREDICATION (EP): an MRS construct that combines a semantic pred-
icate with its associated arguments

EP CONJUNCTION: a set of EPs that share a quantifier scope

FIRST SELECTION: a method of selecting one translation hypothesis among many by
taking the first realization; cf. Oracle selection

FROM -ORIENTED LINK: a DMRS link connecting a quantifier to its quantifiee or a non-
scopal modifier to its modifiee; a rooted traversal would start at the link’s to node
and end on the from node; cf. to-oriented link

GRAPH ORDER: the number of nodes in a graph

HANDLE CONSTRAINT: specified relationships between holes and scope handles; most
notably, qeq

HEAD: in semantic dependency representations, the side of a relation that corresponds
to a functor; cf. dependent

HOLE: an argument position in underspecified representations that is understood to be
filled with a scope handle

HYPOTHESIS: a selection of parse result, transfer result, and generation result that results
in a translation
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HYPOTHESIS SET: the set of hypotheses for an input item

IDENTICAL: a duplicate item in a corpus that is part of the natural distribution; cf.
spurious duplicate

INDIVIDUAL CONSTRAINT: specified relationships between the variables for individuals;
used, for instance, to encode information structure

INTERLINGUA: a (usually high-level, such as semantic) representation that is shared be-
tween two or more languages

INTERSECTIVE SUBSET: in a comparison of translation systems with imperfect cover, the
subset of results that are covered by all systems

INTERSET DUPLICATE: a duplicate that repeats an item appearing in another dataset

INTRASET DUPLICATE: a duplicate that repeats an item within the same dataset

INTRINSIC VARIABLE: the variable (canonically with the arg0 role) in an elementary
predication that represents the predication itself; for individuals it is the variable
bound by quantifiers, and for all predications it can be used to select an argument

INTRINSIC VARIABLE PROPERTY: a requirement that every elementary predication
has a unique intrinsic variable

INVERSE LINK: a DMRS link that has been marked to indicate that its preferred direction
of traversal in a rooted graph is opposite to its link direction

ISOMORPHISM: graph comparison that considers if two graphs have the same shape, often
including node and edge labels; also see structural isomorphism

LABEL: see scope handle

LEXICAL GAP: a error in sentence generation where an input semantic predicate cor-
responds to no known lexical entry in the grammar

LHEQ: a relation between a hole and scope handle that encodes a strict ordering

LINK DIRECTION: the direction of a link determined by its functor-argument (i.e. from→to)
order
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LINK ORIENTATION: a property of DMRS links that indicates the preferred direction in
a rooted traversal and is separate from the inherent functor-argument direction of
the link

LNK VALUE: see surface alignment

MEMOUT: a processing condition where a process runs out of allocated memory

MINIMAL RECURSION SEMANTICS (MRS): (Copestake et al., 2005) a semantic representa-
tion characterized by its flat structure and underspecified quantifier scope; commonly
used in conjunction with HPSG grammars

MONOLINGUAL GRAMMAR: an implemented grammar for parsing/generating sentences
for some language (also called a grammar if the usage is unambiguous)

MORPHOSEMANTIC PROPERTY: a property attached to a predication, node, or variable
that encodes the semantic effects of morphology or directly from lexical items (e.g.,
tense on events, number on individuals)

MULTI-WORD EXPRESSION RULE: a transfer rule capturing more than one predicate on
the source side

NON-ARGUMENT LINK: DMRS links that do not correspond to MRS role arguments; cf.
argument links

NON-COMPOSITIONAL REPRESENTATION: a representation that is not built-up by indi-
vidually licensed components; cf. compositional representation

NUMERIC REPRESENTATION: a representation that uses real values; cf. symbolic rep-
resentation

OCCASION MEANING: the meaning of a sentence as was originally intended by its speaker

ORACLE SELECTION: a method of selecting one translation hypothesis among many
by taking the realization that best fits a reference translation, e.g., against a metric
such as BLEU; cf. First selection

OUTSCOPES: an relation between a hole and scope handle that is an alternative to
qeq and lheq, although its implementation may vary
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PREDICATE: see semantic predicate

PREDICATE PHRASE: an n-gram of contiguous semantic predicates

PREDICATE PHRASE PAIR: a pairing of source and target predicate phrases

PREDICATION: a semantic predicate and its associated arguments

QEQ: equality modulo quantifiers; a relation between a hole and scope handle that
encodes a partial ordering

REPRESENTATIVE NODE: in a scopal conjunction, the predication that is most salient as
representing the entire set

ROLE: see semantic role

ROOTED TRAVERSAL: a traversal of a DMRS graph that results in a singly-rooted graph

SCOPAL MODIFICATION: modification where the argument is a scope handle rather
than a particular predication

SCOPE HANDLE: a label that refers to a scope position or scopal conjunction

SEMANTIC GRAPH: a semantic representation viewed as a graph of predicates and their
arguments

SEMANTIC INTERFACE: a description that relates a semantic model to a syntactic model

SEMANTIC MODEL: a system of semantic predicates, roles, properties, and variables, as
well as constraints on well-formed structures

SEMANTIC PREDICATE: a symbol in a semantic representation that signifies an entity or
construction

SEMANTIC OPERATIONS: procedures that inspect or transform semantic representations

SEMANTIC ROLE: the semantic relationship between a functor (e.g., semantic predi-
cate) and its argument

SEMANTIC SPACE: the range of reference, or the intension, for a particular word sense
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SEMANTIC SUBGRAPHS: a fragment of a larger semantic representation

SEMANTIC TRANSFER: transfer where the material being shifted is a semantic repre-
sentation

SINGLE RULE: a transfer rule that matches one source predicate

SPEAKER MEANING: see occasion meaning

SPURIOUS DUPLICATE: a duplicate item in a corpus that is not part of the natural
distribution—e.g., caused by user error; cf. identical

STANDING MEANING: the meaning of a sentence as can be inferred by its surface form
without contextual information

STRUCTURAL REPRESENTATION: a representation that links information together into a
larger structure

STRUCTURAL ISOMORPHISM: graph comparison that only considers nodes, edges, and
edge labels, not node labels

SURFACE ALIGNMENT: a correspondence between semantic material and positions in the
linear linguistic signal; in *MRS representations this is given by the cfrom and cto
values (also called characterization or lnk values)

SURFACE PREDICATE: a semantic predicate corresponding to a token in the surface
form

SYMBOLIC REPRESENTATION: a representation using discrete, atomic symbols that stand
in for unknown real values (cf. numeric representation)

TO-ORIENTED LINK: a DMRS link such that a rooted traversal would start on its from
node and end on its to node; cf. from-oriented link

TRANSFER: the step of translation where material shifts from a source-language repre-
sentation to a target-language representation (see also semantic transfer)

TRANSFER GRAMMAR: a system of rules for mapping one semantic representation to
another
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TRANSFER GRAMMAR AUGMENTATION: the process of building upon a small, core trans-
fer grammar with additional transfer rules

TRANSFER PAIR STORE: a set of accumulated transfer pairs

TRANSFER RULE: a rewrite rule that maps source language material to target language
material

TRANSLATION: the process of producing one or more target-language sentences for a
given source-language sentence

UNDERSPECIFIED REPRESENTATION: a representation that accommodates ambiguity by
generalizing over fully specified forms

VARIABLE PROPERTY: a morphosemantic property that is associated with an MRS
variable

VARIABLE-PROPERTY MAPPING: a system of rules that transforms the grammar-internal
variable properties and values to and from grammar-external properties and values

xvii



NOTATIONAL CONVENTIONS

Typesetting

In regular prose, I use the typesetting conventions in the following table:

Convention Usage Example

Italics cited linguistic forms,a …allows 61 years to modify…

transliteration 太陽 taiyou → sun

“Quotes” in-text glossing エチオピア Echiopia “Ethiopia”

direct quotes …had asked, “what is the…

Slanted math, algorithms, variables …each alignment a ∈ A is…

Bold emphasis, 31.5 24.6 43.0 10.6

introduced terminology …bilingual semantic (bisem) corpus…

Small-caps grammatical glosses, …Touzai -line -gen opening -dat…

feature names, …features include flags.equal and…

functions …function DmrsNodeDepths() takes…

Monospace semantic predicates, …use of number_q would…

code, serialized data (e0 / _find_v_1)
a forms written in Roman script; forms in non-Roman orthographies use upright fonts

There are additionally some project names that are typeset specially, such as LOGON,

Verbmobil, [incr tsdb()], and Zhong [|]. In algorithms, I use bold for control-flow syntax

and keywords, slanted for variables and data structures, small caps for defined functions,

monospace for string literals, upright serif for basic operations, and right-alignment for com-

ments. For example:
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if ToOrientedLink(l) then

relation ← FormatString("%s-%s",lrole,lpost) ▷ E.g., ARG1-NEQ

append ⟨lfrom, relation, lto⟩ to T

Glossing

Many linguistic examples are presented as interlinear glossed text (IGT). For example:

その
sono
that

単語
tango
word

を
-wo
-acc

辞書
jiten
dictionary

で
-de
-ins

ひい
hii
look.up

て
-te
-inf

ごらん。
-goran
-try

“Look up the word in your dictionary.” [jpn]

The first line is a Japanese sentence in native orthography, followed by a transliteration

(i.e., romanization) that shows the morphologial boundaries, then the morpheme glosses, and

finally a free translation. The transliteration system I use is Kunrei-shiki with the allowed

exceptions for, e.g., つ tsu, じょ jo, を wo, etc.1 I follow the Leipzig Glossing Rules2 and

supplement it with additional glossing grams where necessary, such as numcl for numeral

classifiers and hon for honorifics.3 I mark verbal te-forms as infinitives (-inf) and I treat

case-marking particles as affixes. I use English glosses where the English word is adequate,

as inその sono “that”, but for pronouns I use the more general person-number-gender values

(e.g.,君 kimi is glossed as 2sg), as English does not always have good overlap with Japanese

where values are underspecified.

The table on the following page lists glosses of grammatical categories (i.e., gloss grams).

Note that I only include those that are used in the document.

1See http://www.mext.go.jp/b_menu/hakusho/nc/k19541209001/k19541209001.html (Japanese).
2https://www.eva.mpg.de/lingua/resources/glossing-rules.php
3The honorifics system in Japanese is much more nuanced than I present in my examples. For example,

Siegel et al. (2016) use six different grams for nominal affixes, addressee honorifics (positive and negative),
and subject honorifics (positive, neutral, and negative), but I ignore these complexities as the distinctions
are not directly relevant for discussion in this document.
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Gram Meaning Example

2 second person 君 kimi “you”

3 third person 彼 kare “he/him”

acc accusative を wo

adn adnominal の no

adv adverbializer に ni

comp complementizer と to

cop copula だ da

dat dative に ni

deo deontic べき beki

gen genitive の no

hon honorific です desu

inf infinitival て te

ins instrumental で de

loc locative に ni

m masculine 彼 kare “he/him”

nmlz nominalizer の no

nom nominative が ga

numcl numeral classifier ⼈ nin

ord ordinal 番⽬ banme

pfv perfective た ta

q interrogative か ka

refl reflexive ⾃分 jibun

sg singular 君 kimi “you”

supl superlative もっとも mottomo “most”

top topic は wa
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Sets and Data

This document often describes operations in terms of sets and with data structures as tuples

with named indices. I use set-builder notation for describing sets and a similar parenthesis-

delimited notation for describing lists (i.e., a list comprehension). The following table

covers the data structures used to describe my algorithms:

Form Usage Example

⟨. . .⟩ tuple a ⟨cfrom, cto⟩ (i.e., start and end) pair…

{. . .} set if lpost ∈ {"NEQ", "EQ"} then

(. . .) list …if M is ({a, b}, {c}, {a, b}), there will be…

The following table describes the notation I use to refer to data via variables:

Form Usage Example

x atomic values, tuple instances l is a Link as a ⟨from, to, role, post⟩ tuple

xy labeled element in tuple if ncarg is not nil then

X sets, lists …a list of EPs R and a…

Xi list indexing Upon visiting a node Ni, the…

Xy labeled elements in list of tuples (lfrom ∈ N ′id) and (lto ∈ N ′id)

Xy
i the y element from the ith tuple in X from← N id

i

Note that variable names can be more than one letter, but atomic values and tuples will

be lowercased (e.g., role), while sets and lists will start with an uppercase letter (e.g., Conj).

I also use sets of ⟨key, value⟩ tuples as property maps with a function-like syntax for access.

For example, if Arg is a property map of roles to arguments, Arg("carg")← N carg
i sets the

value of the key carg in the mapping Arg to the value at N carg
i .

xxi



ACKNOWLEDGMENTS

I would first like to thank my committee. First I thank my advisor, Emily M. Ben-

der, for her tireless help with this project as well as the many other projects I worked

on as her student. I often relied on her vast knowledge of our field and impressive abil-

ity to quickly review papers (sometimes while walking to or from campus) for things

as small as punctuation and as large as document structure and framing. She also

had insightful suggestions for improving methodologies, evaluations, and relations to

previous work; a strong sense of personal and professional ethics; and a fearless and

unapologetic determination to make our societies—academic as well as local, national,

and global—better for all involved. I thank my co-advisor, Francis Bond, who not

only provided a wealth of experience in East and Southeast Asian languages, lexical

resources, machine translation, and more, but he, along with Kyonghee and Arthur,

have been dear friends to my family for many years. I thank Fei Xia for her insight

into other subfields and for the many research opportunities she offered me during

my studentship. I also thank Luke Zettlemoyer for his questions during and (along

with all above) flexibility in scheduling my defense.

In addition, I’d like to thank: Ann Copestake and Guy Emerson for answering

my endless questions about MRS and DMRS; Stephan Oepen for his collaboration on

various projects and insightful and detailed replies to my questions; Dan Flickinger

for his help with the ERG and for nevertheless; František Kratochvíl for his help

with language resources and with navigating NTU’s administration; Luis Morgado

da Costa for his suggestions and opinions (except, maybe, regarding dessert); Toby,

xxii



Rafe, Arthur, and Matt for evaluating my system outputs; Matic Horvat for first

rekindling the dormant JaEn back to life and offering useful suggestions for going

forward; Woodley Packard for providing support for ACE, discussions, an RAship,

and for hosting informal and useful mini-research-summits; Glenn Slayden for useful

discussions and also for hosting a mini-summit; Michael Jellinghaus for providing a

copy of his hard-to-find dissertation and for kicking off work on the automatic ex-

traction of transfer rules from bilingual corpora; Eric Nichols for the initial work

of augmenting JaEn with automatically created rules and for creating the transfer

setup that inspired my own pipeline; Petter Haugereid for building the system that

I used as a baseline and for providing insight when building my own system; Ioannis

Konstas for useful discussions and experiments with neural generation from DMRS;

Francis Bond, Guy Emerson, Alex Kuhnle, and T.J. Trimble for their contributions

to PyDelphin; Daniel Hershcovich and Marcos Pertierra for their contributions to the

Penman library; David Brodbeck and Brandon Graves for IT support; Mike Furr,

Joyce Parvi, and Cathy Carrera for all their administrative help (and occasional com-

miserating); Rik Koncel-Kedziorski and Marina Oganyan for their suggestions after

my practice-defense; and the members of DELPH-IN, members of BondLab and the

Linguistics and Multilingual Studies group at Nanyang Technological University, as

well as the members of emb-students and the Linguistics Department at the University

of Washington, for their all support.

Finally, I wish to thank my family: my parents and parents-in-law for all their

encouragement and financial support; my sons, for always being happy to see me when

I got home; and my wife, Ning, for her love, patience, and good humor throughout

this project.

xxiii



DEDICATION

to my wife, Ning, and to my sons, ⟨Willamette, {Rainier, Emmett}⟩

xxiv



1

Chapter 1

INTRODUCTION

This dissertation describes a new approach to the automatic extraction of semantic map-

pings for rule-based machine translation. This approach continues previous work in combin-

ing HPSG (Pollard and Sag, 1994) rule-based grammars, whose precise bidirectional imple-

mentation facilitates deep semantic analysis of sentences and the enumeration of grammatical

realizations of semantic representations, and data-driven techniques of machine translation,

whose automatic extraction of knowledge and statistical inference allow models to be quickly

built from bitexts and to rank extracted patterns by their frequency. The grammars map

strings to an underspecified semantic model, viz., Minimal Recusion Semantics (MRS;

Copestake et al., 2005), but this model is not an interlingua, or shared representation,

between the source and target grammar; rather, each grammar defines its own model. Hav-

ing per-grammar semantic models allows the grammars to capture the semantic realities of

the target language without having to make concessions or compromises in order to accom-

modate another, possibly very different language, but it also means that semantics-based

translation must work with two different models. I therefore work in the space of semantic

transfer where transfer rules map semantic fragments in the source grammar’s semantic

model to fragments in the target model. By focusing only on the transfer of semantics, i.e.,

the translation of meaning, I can rely on the source and target grammars to perform the

mapping to and from semantic representations.

Ideally, a transfer grammar (a system of transfer rules and supporting definitions)

would map the entirety of the source semantic model to the target model, but hand-building

such a grammar—as the monolingual grammars are hand-built—is impractical. This im-

practicality is because (1) it is only useful for one language pair and in one direction (unlike



2

monolingual grammars, which can be useful as the source or target of a translation system);

(2) it needs to be updated whenever either the source or target grammar changes a semantic

analysis; (3) its author needs to be highly skilled: proficient in both languages and familiar

with both implemented grammars; and (4) in order to have reasonable transfer coverage

it needs a large number of rules, and the effort to create such a system likely exceeds the

capabilities and/or interest of those with the requisite skills. In contrast, a data-driven

transfer-rule extractor can be used to generate a large number of rules quickly and it there-

fore becomes trivial to update a transfer grammar to changes in the monolingual grammars

(or to, say, create a domain-specific transfer grammar by selecting subsets of the training

data) and it does not require a highly-skilled grammar writer. My approach is transfer

grammar augmentation—automatically extracting a large number of transfer rules and

using them to build on top of a small hand-built core transfer grammar which defines

the basic structures that the extracted rules make use of.

I define two new methods for bilingually aligning semantic fragments (or semantic sub-

graphs) and a heuristic strategy for aligning nodes between source and target subgraphs,

which together allow me to design transfer systems that meet, and at times exceed, the

translation coverage and quality of the prior state of the art with a significantly reduced de-

pendence on idiosyncratic language-pair definitions (i.e., improved language independence).

These improvements are made possible by a number of semantic operations, either de-

signed or implemented by me and defined within this dissertation, that consider the graphical

nature of the semantic representations and allow for inspection and transformation as graph

operations.

I apply my methods to the task of translating Japanese sentences into English. This

language pair is a good choice partly because Japanese and English are typologically distant,

so translation between them is more challenging than for some other pairs. This pair is

also a convenient choice as two of the largest implemented HPSG grammars already exist

for them, and furthermore I’m a native speaker of English and a reasonably competent

speaker of Japanese, so I can judge the quality of the extracted rules and the outputs during
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development.

For the remainder of this chapter, I will discuss challenges in translating human language

in Section 1.1, motivate my choice of machine translation paradigm in Section 1.2, and list

the main contributions of the thesis in Section 1.3. I close the chapter in Section 1.4 with

an outline of the remaining chapters.

1.1 Translating Human Language

The translation of human languages is an incredibly complex task. A translator endeavors

to understand the meaning and intent of the source utterance then produce a new utterance

in the target language whose content has the same meaning—and intent—as the original.

In addition, the translation ideally matches the original tone (e.g., emotion, politeness), and

is adapted for the linguistic competence of the audience or interlocutor (who might not be

familiar with certain jargon, or might not even be native speakers of the target language).

For spoken translation, this also needs to occur within a very short span of time.

Languages are embedded in a culture, or perhaps across many cultures, and this affects

a speaker’s use of idiom, metaphor, allegory, etc. Furthermore, words in one language do

not always have a simple, single-word translation in another. In order to get the appropriate

meaning across, a source word may therefore be translated as multiple words, or perhaps

not translated at all. Even within a single language, a word often has multiple senses.

For instance, the English word light has many nominal, verbal, and adjectival senses: the

thing that illuminates (i.e., photons; this room gets lots of light in the morning), a kind of

electromagnetic radiation, a device that produces light, the act of igniting something (e.g.,

cigarettes; can I get a light?), to illuminate, to ignite, bright, pale, etc. In addition, there are

senses having to do with weight or significance (e.g., a light bag, a light meal, a light touch, a

light jacket, a light suggestion) or a verb meaning to descend, to get down, etc. While these

senses all share the same form in English, each one may result in a different form in another

language, although often some senses correspond to the same form cross-lingually because

they are derivative. For instance, ⼼ kokoro “heart” in Japanese means the cardiovascular



4

organ, but also has the senses mind or core, as in English. Even for a single word sense there

is a semantic space or range of reference it occupies, figuratively, in a speakers mind. For

example, water in English is the liquid form of H2O, whereas in Japanese the word ⽔ mizu

is generally used only for cold, cool, or tepid water, while 湯 yu is used for hot water. The

imperfect overlap of words across languages is one challenge for translation, although the

problem is made easier by considering more than one word at a time as word collocations

which can resolve some lexical ambiguities.

Beyond lexical translations, there is also the problem of word-order differences. Some

differences are localized within a clause, such as the adjective-noun versus noun-adjective

difference in English and Spanish (e.g., red tomato versus tomate rojo), but sometimes more

is involved than just swapping a pair of words. For example, Japanese is generally similar to

English in putting adjectives before nouns, but Japanese puts nearly all nominal modifiers

before nouns, including clausal modifiers, where English does not.1 These differences are

matters of surface realization; there are no significant differences in the semantics. These

kinds of variation can become even more complex, but a full enumeration of typological

variation with respect to word order is beyond the scope of the discussion here. HPSG

grammars are good at mapping semantic representations to grammatical surface realizations

so I can rely on them for these kinds of differences.

More difficult are differences that fundamentally change the structure in some way that

goes beyond word sense and word ordering choices. Dorr (1994, p. 598) enumerates a number

of linguistic divergences that change the argument structure in the syntax and semantics,

shown in (1)–(7).

1Consider (i), where 太郎が炊いた Tarou-ga taita “Tarou cooked” appears before the noun in Japanese,
but after in English, although the adjective 美味しい oishii “delicious” appears before the noun in both.

(i) 太郎
Tarou
Tarou

が
-ga
-nom

炊い
tai
cook

た
-ta
-pfv

美味しい
oishii
delicious

飯
meshi
meal

“The delicious meal that Tarou cooked”
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(1) Thematic divergence:
I like Mary ⇔ Maria me gusta a mi [eng] ⇔ [spa]

“Mary pleases me”
(2) Promotional divergence:

John usually goes home ⇔ Juan suele ir a casa [eng] ⇔ [spa]
“John tends to go home”

(3) Demotional divergence:
I like eating ⇔ Ich esse gern [eng] ⇔ [deu]

“I eat likingly”
(4) Structural divergence:

John entered the house ⇔ Juan entro en la casa [eng] ⇔ [spa]
“John entered in the house”

(5) Conflational divergence:
I stabbed John ⇔ Yo le di puñaladas a Juan [eng] ⇔ [spa]

“I gave knife-wounds to John”
(6) Categorial divergence:

I am hungry ⇔ Ich habe Hunger [eng] ⇔ [deu]
“I have hunger”

(7) Lexical divergence:
John broke into the room ⇔ Juan forzo la entrada al cuarto [eng] ⇔ [spa]

“John forced (the) entry to the room”

In (1), the Spanish gustar (in its conjugated form gusta) is translationally equivalent to the

English like, but the arguments are opposite of those for like.2 In (6), the English hungry

is a state (i.e., an adjective), but the German Hunger is something one has (i.e., a noun).

My methodology is well-suited to address divergences exemplified by (4), (5), and (7) as it

can extract generalized rules that capture the phenomenon while leaving the arguments of

the verbs open. For the other patterns, it can possibly capture subgraphs that exhibit the

phenomena, but these would be specialized rules that would not generalize to variations of

the sentences (e.g., I like Sandy instead of I like Mary).

There are many ways that languages can differ, and sometimes these require different

2It structurally more similar to the English please, but please is a less natural translation.
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techniques for improving translation results. For differences in word order and morphological

realization, I rely on the HPSG grammars to map strings to and from semantic representa-

tions. For lexical mapping and structural semantic divergences, transfer using larger semantic

subgraphs (i.e., not just a single word or the equivalent semantic entity) will help capture

the appropriate lexical sense and argument structure.

1.2 Machine Translation using Semantic Representations

Transfer is often defined as a method of translation that converts high-level source struc-

tures (e.g., syntactic or semantic representations) to the equivalent target representation. I

think a broader definition is more useful when comparing machine translation methodologies,

so I redefine transfer as the process that maps source-language representations to target lan-

guage representations. Translation is therefore the process of converting a source-language

sentence into a target-language sentence, including any preprocessing, analysis, transfer, re-

alization, and postprocessing steps. By this definition, even word-based and phrase-based

translation methods include a transfer step and translation via an interlingua would perhaps

be the only method that does not. My work targets transfer at the semantic level.

Translating via semantics may have benefits over word-based or even syntax-based trans-

lation methods, such as for capturing long-distance dependencies or for abstracting or nor-

malizing over differences that are more important for monolingual modeling than for cross-

lingual transfer. Machine translation researchers often appeal to this notion by referencing

the Vauquois Triangle (Vauquois, 1968), reproduced in Fig. 1.1. At the base corners of the

triangle are the source-language sentence (on the left) and the target-language sentence (on

the right). Translation is a path across this triangle that transforms the source sentence

to the target sentence. The higher up the Analysis side of the triangle a path climbs, the

higher-level (i.e., more abstract) the source representation becomes and, in theory, the closer

the representation becomes with respect to a target representation. Descending the Gener-

ation side of the triangle corresponds to the realization of sentences from various levels of

abstraction. My definition of transfer is thus any lateral traversal from the Analysis side to
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the Generation side of the triangle. Closeness in representation is expected to correlate with

the relative ease of transfer. For example, token transfer (e.g., string-to-string) methods not

only have to map tokens to translationally equivalent tokens, but they need to model (or

approximate) source and target word orders, morphology, whether or not to drop or insert

unmapped tokens, etc. Semantic transfer relies on source and/or target resources, such as

implemented grammars, to handle most of these tasks monolingually, and transfer maps

only the semantic effects of source-language analysis to a target-language representation.

Transfer need not always map to an equivalent level: it can map semantics to strings, syntax

to strings (also called tree-to-string), strings to syntax (string-to-tree), and so on, depending

on the source or target language resources that are available.

Source string

Morphology

Constituents

Syntax

Semantics

Pragmatics

Interlingua

Target string

An
aly

sis
Generation

(e.g., word-based SMT)
direct (dictionary) transfer

word + POS transfer

phrase-based SMT

(e.g., tree-based)
shallow transfer

(e.g., dep-based)
deep transfer

?

not surface-bound
surface-bound

Figure 1.1: Vauquois triangle

One variation on the Vauquois Triangle is a version with no convergence to an interlingua,

as shown in Fig. 1.2. This version was created as a reaction to the Vauquois Triangle in

order to highlight the difficulty or implausibility of arriving at a common representation.
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It is simultaneously attributed to (at least) two sources: Ann Copestake, as the Copestake

Volcano,3 although she herself calls it the Vauquois inverted funnel with a very long spout;4

and Satoru Ikehara, as the Ikehara discontinuity.5 Interlinguas are certainly not impossible,

especially for controlled domains like technical documentation for heavy machinery (Lonsdale

et al., 1994) or weather reports (Chandioux, 1976), but it may be impossible, or at least more

effort than it’s worth, to create an accurate, expressive, general-purpose interlingua.

Source string

Morphology

Constituents

Syntax

Semantics

Pragmatics

Target string

An
aly

sis
Generation

(e.g., word-based SMT)
direct (dictionary) transfer

word + POS transfer

phrase-based SMT

(e.g., tree-based)
shallow transfer

(e.g., dep-based)
deep transfer

?

not surface-bound
surface-bound

Figure 1.2: Vauquois inverted funnel with a very long spout

Using a higher-level representation, such as semantics, for transfer is theoretically ap-

pealing but there are practical challenges. One challenge is coverage. The methodology of

semantic transfer that I use employs three grammars in the translation pipeline—a source

grammar for analysis, a transfer grammar, and a target grammar for generation—and each

3See http://courses.washington.edu/ling567/2017/0516.pdf, retrieved 18 March 2018.
4See https://www.cl.cam.ac.uk/teaching/0809/NLP/lectures.pdf, retrieved 18 March 2018.
5See http://compling.hss.ntu.edu.sg/courses/hg8003.2014/pdf/wk-08.pdf, retrieved 18 March

2018.

http://courses.washington.edu/ling567/2017/0516.pdf
https://www.cl.cam.ac.uk/teaching/0809/NLP/lectures.pdf
http://compling.hss.ntu.edu.sg/courses/hg8003.2014/pdf/wk-08.pdf
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grammar can fail to process some of its inputs, thus reducing the overall coverage at each

step. Automatically extracting rather than hand-building transfer rules helps improve trans-

fer coverage, but improving the source or target grammar coverage is not a goal of this

dissertation. My evaluation compares the quality of items that were fully translated by

computing automatic evaluation metrics over the intersection of translated items. A second

challenge is disambiguation. As a sentence, the meaning of an input is implicit; that is, the

sentence could correspond to many different interpretations. The analysis of a sentence to a

syntactic or semantic representation must make decisions about particular interpretations,

and thus the meaning of the input can become explicit but alternative meanings (perhaps

even the intended one) can be lost in the process. My methodology addresses this challenge

in two ways: (1) it uses a semantic representation that defers resolutions about ambiguity

(e.g., lexical or quantificational) as much as possible, and (2) it enumerates the top N results

(i.e., decisions) in case the first one is not the best. While a fully disambiguated analysis is

the most informative for translation, for a data-driven model it increases data sparsity and

increases the chances of choosing an incorrect disambiguation, so my methodology strikes a

balance between expressiveness and learnability.

The tools and resources used by both low-level (e.g., phrase-based) and high-level (e.g.,

semantics-based) methods are possible because of language-specific information built into

them. Machine translation systems, and NLP systems in general, often claim to be language-

independent when they do not contain hard-coded decisions for a particular language, but

language independence is better thought of as a scale than as a binary attribute, because

there are many sources of linguistic information that are not coded decisions. A string-

based method may rely on tokenizers, stemmers, lemmatizers, and text-normalizers that are

developed or optimized for specific languages. The selection of a reordering model, and even

the use of n-grams, embed linguistic biases into the system (Bender, 2011). Abstraction-

based methods may also use the tools and methods above, but they also use representations

that come from linguistic analysis of the languages and may take the form of annotated

corpora, hand-built grammars, etc. My systems avail themselves of many sources of linguistic
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information.

1.3 Main Contributions

This dissertation describes two new methods for extracting semantic transfer rules for rule-

based machine translation, corresponding to two methods for bilingually aligning semantic

subgraphs. The first method extends previous work by Haugereid and Bond (2011, 2012) on

finding predicate phrase pairs by linearizing the source and target semantic predicates as if

they were words (i.e., without any of the structure) then using an n-gram word aligner to find

corresponding source and target n-grams. Haugereid and Bond (2011, 2012) matched these

n-grams to templates and output stored semantic representations, but I avoid the use of hand-

crafted templates by projecting the predicates onto the original semantic representations that

were used for linearization. In this way, I recover the original, observed structure and avoid

a potential deficiency where the structure stored in a template differs from the observed

structure. The use of predicate n-grams, whether with templates or without, is an indirect

way of finding aligned subgraphs, so in the second method I align subgraphs directly via graph

traversals, inspired by previous work on both MRS (Jellinghaus, 2007) and LFG f-structures

(Hearne and Way, 2003; Graham et al., 2009). I do this by enumerating the subgraphs for

the source and target representations, pairing them via the Cartesian product, then applying

several levels of graph filters and statistical filters to remove bad pairings. Both methods

yield aligned semantic subgraphs, but do not offer a more granular bilingual mapping of

individual nodes, which is important for producing high-quality transfer rules. Therefore,

they both rely on a heuristic strategy for finding node alignments—a task I call bilingual

variable binding since the nodes are mapped via the coindexation, or binding, of variable

identifiers. This strategy finds an approximate, though possibly incomplete, mapping of node

identifiers by binding those with the same node type (e.g., referential index or eventuality)

and located in a similar position relative to the top node in the subgraph structure.

In order to define the methods of subgraph alignment and bilingual variable binding,

I implemented several semantic operations for working with the MRS representations that
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are produced and processed by the HPSG grammars. Some of these implementations are

my own design, while others are adaptations of algorithms described elsewhere. The adap-

tations include MRS to DMRS (Copestake, 2009) conversion and deconversion and DMRS

simplification. Novel implementations include a method of structural isomorphism com-

parison, implemented as a string comparision of a deterministic graph serialization; a test

for link orientation based on link properties that is separate from the functor-argument

direction of links; a rooted traversal that uses link orientation to convert a multiply-rooted

DMRS graph to a singly-rooted graph; and two methods of DMRS subgraph extraction, one

by matching n-grams of predicates and another via a depth-limited rooted traversal.

I use the above methods and operations to build two systems based on automatically

extracted transfer rules. The first system extracts 359,407 aligned semantic subgraphs,

leading to end-to-end translation coverage of 18.4%, a 5.8% increase over the previous state

of the art for MRS transfer (Haugereid and Bond, 2011, 2012), which I use as a baseline,

although at a slight drop in BLEU score (Papineni et al., 2001): 24.86 versus 30.40. The

second system extracts 977,532 aligned semantic subgraphs, which is much more than my

first system, but the end-to-end coverage is in fact lower: 10.6%, which is a 2% drop from the

baseline. The BLEU score, however, is more competitive: 29.74 versus 30.40. My systems

do not beat a Moses (Koehn et al., 2007) phrase-based baseline on BLEU (35.05), but they

are competitive on the METEOR metric (Banerjee and Lavie, 2005; Lavie and Agarwal,

2007), where my second system gets 34.83 and Moses gets 35.80. In-depth analysis of my

results shows that my extraction methodology is finding good aligned subgraph pairs but is

(1) having difficulty fully utilizing the pairs in the transfer grammar due to an incomplete

bilingual variable binding, and (2) possibly losing good analyses and transfers due to early

filtering of translation hypotheses. These results show that my systems are of similar quality

to MRS transfer baseline but, unlike the baseline, mine are produced without hand-built

and hand-tuned templates, thus improving language independence and maintainability. The

analysis further shows that there are several promising research directions that can improve

the performance of the aligned subgraph pairs I extracted.
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1.4 Document Outline

The rest of this dissertation is organized as follows. In Chapter 2 I cover DELPH-IN Seman-

tics, the semantic framework that defines the representations I use as the medium of transfer

in my machine translation experiments. Of particular relevance are Sections 2.6 and 2.10,

which describe the MRS and DMRS representations, both of which are heavily utilized in my

research. I situate my translation methodology in the broader literature in Chapter 3 where

I describe the relevant paradigms and methods in prior machine translation research. The

process of building a transfer model and using it to translate source sentences into target

sentences is complex and involves many steps, so in Chapter 4 I provide a high-level overview

of the transfer-grammar building and translation pipelines.

Chapter 5 is the first chapter describing my own methods and contributions, and covers

the semantic operations I perform for transfer rule extraction, transfer grammar building,

and translation. Section 5.1 defines the conversion of MRS into DMRS (Copestake, 2009),

required for my methods of transfer rule extraction, and Section 5.2 defines the reverse proce-

dure, converting DMRS into MRS, which is required for augmenting the transfer grammars.

Section 5.6 explains my methods for extracting subgraphs from DMRS instances. Section 5.7

lists some graph transformations I apply to simplify rule extraction.

In Chapter 6 I explain my methods for bilingual semantic subgraph alignment—the first

major step in extracting transfer rules from a bilingual corpus of semantic representations.

I explore two different methods of alignment, each of which produce a transfer pair store.

The first, described in Section 6.1, is the alignment of linearized semantic predicates, inspired

by previous work by Haugereid and Bond (2011, 2012). The second, described in Section 6.2,

is the direct alignment of semantic subgraphs enumerated via graph traversal, inspired partly

by previous work within DELPH-IN (Jellinghaus, 2007) and for LFG representations (Hearne

and Way, 2003; Graham et al., 2009). The methods require different forms of filtering to help

ensure the resulting transfer pair stores only contain translationally equivalent mappings, but

there are also filters common to both methods, described in Section 6.3.
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Chapter 7 defines my methods for augmenting a core (i.e., minimal) transfer grammar

with rules created from the extracted transfer subgraph pairs. I give an overview of the

LOGON transfer machinery in Section 7.1. Section 7.2 describes how I select pairs from

the transfer pair stores for a translation task, and how I order the pairs to improve the

performance of the resulting transfer grammar. The subgraph pairs are converted to MRS

transfer rules as described in Section 7.3, Each subgraph in a subgraph pair describes the

relationships between its own nodes via edges and these relationships are encoded as coin-

dexed variables in MRS. The process of binding variables (i.e., establishing coindexation)

from node relationships is described in Section 7.3.1. The binding of variables bilingually,

that is, encoding the relationships between source and target nodes, is more difficult than

monolingual binding, but equally crucial for producing high-quality transfer rules. The sub-

graph pairs I extract do not contain any information about bilingual node relationships, so

I use heuristics to approximate a useful bilingual binding, as described in Section 7.3.2.

Chapter 8 explores the data sources I use for building transfer grammars and for trans-

lation. The performance of data-driven methods, such as my transfer rule extraction, is

heavily affected by the quality and quantity of the data given, so this exploration is useful

for understanding what kinds of information my method can utilize and how it compares

to that used by past research. I give qualitative descriptions of the corpora in Section 8.1

along with some examples from each. In Section 8.2 I give a quantitative analysis of the

data, including the distribution of sentences by length (i.e., word count) and the number of

duplicate entries. My translation pipeline works with the semantic representations produced

by precision grammars, meaning it can only use data that is modeled by the grammars. In

Section 8.3 I analyze the parsing performance of the Jacy (Siegel et al., 2016) and ERG

(Flickinger, 2000) grammars, as I require the outputs of both for extracting transfer rules.

In Section 8.4 I provide a similar analysis of generation performance, but only for the ERG

as I only translate from Japanese to English, and thus I depend on the ERG’s generation

coverage. The intersection of semantic representations output by parsing both sides of a

bitext results in a bilingual semantic corpus, or bisem, and I describe the bisem created
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from my data sources in Section 8.5.

Chapter 9 describes my experimental design for evaluating the translation performance

of transfer grammars produced via my rule extraction methods. I start by describing the

evaluation metrics in Section 9.1, pipeline parameters in Section 9.2, and other data prepra-

tion steps in Section 9.3. I compare my systems to two baselines: a Moses (Koehn et al.,

2007) system trained on the full bitexts, described in Section 9.4; and a transfer baseline

based on the prior state of the art for rule extraction (Haugereid and Bond, 2011, 2012),

described in Section 9.5. I have two experimental systems and for each I define a number of

configurations for exploring the parameter space. The LPA system, described in Section 9.6,

uses the subgraph pairs found via the linearized predicate alignment method. The SGA

system, described in Section 9.7, uses the pairs found via enumerated subgraph alignment.

Chapter 10 reports the results of my experiments and in Chapter 11 I analyze those

results. The results of LPA on the development data are given in Section 10.2 and those of

SGA on the development data are given in Section 10.3. Section 10.4 reports the results over

the test data, using the top-performing configurations from LPA and SGA. My experimental

systems are competitive, but do not clearly improve on the baselines in the automatic quality

estimations, so in my analysis I inspect numerous aspects of the systems to see where they

do well and where they do not. I look at overlap (where a system produces the same transla-

tion as the reference sentence or the output of another system) in Section 11.1 and compare

the systems’ relative performance on automatic quality estimations in Section 11.2. In Sec-

tions 11.3 and 11.4 I look at graph properties such as the distribution of subgraph topologies

and several well-formedness metrics for MRS. I also look at computational performance mea-

sures, such as the number of times a system hits a timeout or memory limit, in Section 11.5.

In Section 11.6 I go through a number of examples and find linguistic constructions that are

easy or difficult for my system to translate.

Finally I conclude in Chapter 12 with an overview of the contributions of this dissertation.

I also list a number of directions for future research, including practical next-steps and more

ambitious proposals.
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Chapter 2

DELPH-IN SEMANTICS

A primary product of the DEep Linguistic Processing with HPSG INitiative (DELPH-

IN) consortium1 is the implemented HPSG grammars available for a variety of languages,

including English (ERG; Flickinger, 2000), Japanese (Jacy; Siegel et al., 2016), Mandarin

Chinese (Zhong; Fan et al., 2015), Indonesian (INDRA; Moeljadi et al., 2015), German (GG;

Müller and Kasper, 2000; Crysmann, 2005), and more,2 and one useful output of language

analysis using these grammars is the semantic representation called Minimal Recursion

Semantics (MRS; Copestake et al., 2005). In the semantic transfer methodology described

in this dissertation, MRS is the object of transfer. I will explain how to inspect and modify

MRS representations in Chapter 5 and how to operationalize MRS for transfer rule extraction

in Chapters 6 and 7. Therefore in this chapter I give an overview of the representation,

including its components and variant representations, so as to provide sufficient background

for later discussions. An example will help to make the following discussion more concrete,

so Fig. 2.1 shows a graphical visualization of an MRS for the sentence The dog sleeps. The

components and interpretation of this visualization will be explained later in this chapter.

MRS is not the only semantic representation used within DELPH-IN, as a variety of

derivative representations have been developed over the years. These derivatives include

Robust Minimal Recursion Semantics (RMRS; Copestake, 2004), Elementary Dependency

Structures (EDS; Oepen et al., 2004; Oepen and Lønning, 2006), DELPH-IN MRS Bilexical

Dependencies (DM; Ivanova et al., 2012), and Dependency Minimal Recursion Semantics

(DMRS; Copestake, 2009). MRS, however, continues to be the primary representation used

1http://www.delph-in.net/
2See http://moin.delph-in.net/GrammarCatalogue for a longer, but still incomplete list.

http://www.delph-in.net/
http://moin.delph-in.net/GrammarCatalogue
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Figure 2.1: MRS graph view for The dog sleeps.

by DELPH-IN software and resources. The derivatives are often grouped under the heading

of MRS, but I think this terminology confuses the more general semantic framework from

the original MRS representation. Therefore, I will use MRS to refer to the representation as

defined by Copestake et al. (2005), *MRS to refer to the family of MRS-based representa-

tions, and DELPH-IN Semantics to refer to the general semantic framework. Many of the

principles of DELPH-IN Semantics were developed for MRS and do not necessarily persist

in other *MRS representations. Nevertheless, those that I consider to be core parts of the

framework are described below, while those specific to MRS are described in Section 2.6.

The remainder of the chapter is structured as follows. First I discuss the core philoso-

phy and development desiderata of DELPH-IN Semantics in Section 2.1, and cover its basic

structures and concepts in Section 2.2. I then explain the ways in which DELPH-IN Se-

mantics is an underspecified representation in Section 2.3. Section 2.4 explains the visual

representations of *MRS structures that I use in this dissertation. DELPH-IN Semantics

are most commonly produced from HPSG grammars, so Section 2.5 explains the role of the

SEM-I for interfacing between semantic representations and grammars. Sections 2.6 to 2.10

describe the various *MRS representations and I compare them to each other in Section 2.11.

Finally, I compare DELPH-IN Semantics to some other semantic frameworks in Section 2.12.
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2.1 Philosophical Basics

The term semantics has a broad range of interpretations, even when restricted to computa-

tional semantics, so here I will clarify what DELPH-IN Semantics is and what it is not. In a

nutshell, DELPH-IN Semantics is a symbolic, structural, compositional, underspecified, and

abstract representation of standing meaning. By symbolic, I mean that DELPH-IN Seman-

tics is represented by discrete atomic symbols, such as predicates and role names, that stand

in for some unknown real values, rather than continuous numeric values where meaning is,

e.g., a point in some n-dimensional space. DELPH-IN Semantics is structural because it

encodes the entities involved in an utterance and their relationship to one another; a repre-

sentation that is not structural may, for instance, encode only lexical semantic information

such as word-sense distinctions. Bender et al. (2015) explain how DELPH-IN Semantics is

compositional, where the meaning representation for a sentence is monotonically built up

from smaller meaning fragments that are each licensed by words in the sentence, and they

compare this to AMR (Banarescu et al., 2013), a representation that is similarly symbolic,

structural, and abstract, but is non-compositional. Bender et al. (2015) also discuss how

compositionality relates to standing meaning (also called sentence meaning), where the

semantic representation encodes only the information that can be obtained by the content

of the linguistic signal; i.e., DELPH-IN Semantics is intentionally non-committal toward

information that is not directly evidenced in the input. In contrast to standing meaning is

occasion meaning (also called speaker meaning) which is the intended interpretation

of the utterance and its intended effect on the addressee. DELPH-IN Semantics is under-

specified because a single representation instance subsumes one or more logical analyses.

See Section 2.3 for more discussion on underspecification. Finally, DELPH-IN Semantics is

abstract in that it, like syntax, describes an utterance with relatively coarse-grained and

generalized labels. In contrast, concrete semantic representations are those that are fully

specialized for their domain-specific usage; e.g., SQL queries over a database.

DELPH-IN Semantics is not a semantic theory on its own, but a “meta-level language
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for describing semantic structures in some underlying object language” (Copestake et al.,

2005, pp. 282–283). While it, as a meta-level language, has high-level constraints on well-

formedness, it is not defined with constraints on semantic validity tied to analyses for a

particular language.3 MRS was engineered to be composed in tandem with syntactic struc-

tures in frameworks like HPSG (Pollard and Sag, 1994) or LFG (Dalrymple, 2001),4 leading

to semantic structures that are close to the syntactic form, but which abstract away the

semantically-empty manifestations of syntax (e.g., infinitival to, obligatory prepositions on

arguments of certain verbal frames), and which are detached from the linear linguistic signal.

Early work on DELPH-IN Semantics was motivated by machine translation (Copestake

et al., 1995) as part of the Verbmobil project (Wahlster, 1993; Bos et al., 1996), so its ba-

sic features were designed to accommodate translation via semantic transfer. Verbmobil

was concerned with speech translation, and thus automatic speech recognition and discourse

representations, but the development of DELPH-IN Semantics has mainly focused on com-

plete textual sentences. Information from longer discourses or present in the audio signal

could be useful for disambiguation or to create a richer representation, but these kinds of

information are generally considered outside the purview of DELPH-IN Semantics. There

are notable exceptions, such as work on resolving fragments by looking at structures in dis-

course (Schlangen and Lascarides, 2002), and in parsing fragments in dictionary definitions

(Fujita et al., 2006). The compositional representation of standing meaning in, e.g., MRS,

can be enriched and specified by processes external to composition when such information

becomes known.

The main desiderata for the development of MRS, from Copestake et al. 2005, pp. 281–

282, are:

Expressive Adequacy The framework must allow linguistic meanings to be

3By way of analogy, the XML data format has well-formedness criteria—e.g., regarding opening and
closing tags, or character ranges—that are applicable to all XML documents, but the validity of a well-
formed document is defined by a schema for a particular application.
4MRS has been shown to work with some non-lexicalist frameworks, like CFGs, as well (Copestake, 2007).
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expressed correctly.

Grammatical Compatibility Semantic representations must be linked cleanly

to other kinds of grammatical information (most notably syntax).

Computational Tractability It must be possible to process meanings and to

check semantic equivalence efficiently and to express relationships between

semantic representations straightforwardly.

Underspecifiability Semantic representations should allow underspecification

(leaving semantic distinctions unresolved), in such a way as to allow flexible,

monotonic resolution of such partial semantic representations.

In order to be expressively adequate, a grammar must be able to license structures that

describe all possible interpretations of a sentence. The full enumeration of a sentence’s

possible scoped forms, however, could yield trillions of readings (Koller and Thater, 2010)—

a computationally intractable number. Therefore MRS makes use of a mechanism, discussed

in Section 2.3, for underspecifying quantifier scope while simultaneously, and necessarily,

encoding predicates in a flat (i.e., minimally-recursive) list instead of a nested structure.

By underspecifying quantifier scope, rather than being merely agnostic about it, MRS retains

expressive adequacy while accommodating the criterion of computational tractability.

MRS, being a symbolic, structural, compositional, underspecified, and abstract repre-

sentation of standing meaning, is found in a very specific corner in the space of possible

semantic representations, but its position is one of general applicability and extensibility. It

is these qualities that make it a useful representation for transfer-based machine translation.

2.2 Structural Semantic Preliminaries and Terminology

Here I briefly discuss the basic elements that are employed in DELPH-IN Semantic repre-

sentations.
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2.2.1 Predicate Symbols

Perhaps the most contentful elements in DELPH-IN Semantics are the predicates, as they

encode the lexical material. A semantic representation containing only predicates would

convey a lot more meaning than one containing only the argument structure, quantification

scope, or other layers. In fact, this was the premise of a machine translation project called

lemmatic machine translation (Soderland et al., 2009), which aimed to translate sentences

between language pairs that have little or no parallel sentences, but do have a large bilingual

dictionary. The results had high translation adequacy, but low fluency, meaning the impor-

tant points were translated but evaluators had a hard time reconstructing how the points fit

together (Everitt et al., 2010).

Semantic predicates in DELPH-IN Semantics can be cast into two broad categories:

surface predicates include those corresponding directly to a surface token (e.g., _dog_n_1

for the word dog or dogs, or _bark_v_1 for the word bark, barks, barked), and abstract

predicates include those that do not correspond directly to a surface token (e.g., compound

for connecting the elements of a noun compound, dofw for abstracting over days of the week,

etc.). Generally, the surface predicates are defined in the grammar’s lexicon and are inserted

into the semantic representation during parsing when a lexical entry is selected for an input

token. Abstract predicates are typically inserted by grammar rules used in a parse, although

they can also appear in the lexicon, as with much-many_a, which is used for the lexical entries

for much, many, lotta, etc.

DELPH-IN Semantics takes a highly underspecified stance on lexical semantics, delegat-

ing the task of sense disambiguation largely to downstream processors. To adapt an old

semantics joke, the meaning of life is _life_n_1.5 More specifically, lexical senses that are

not associated with differences in morphosyntax are conventionally not given distinct predi-

5This joke originates as the answer to a question in a class on Montague grammar. The class was co-
taught by Barbara Partee and Terry Parsons at the University of Massachusetts in 1967 and they had
offered to answer any question on the last day of class. Gregory Carlson, then a student, had asked, “what
is the meaning of life?”, to which Barbara Partee walked up to the chalk board and wrote ˆlife'. A fuller
account of this episode is given in the foreword of Gregory Carlson’s dissertation (Carlson, 1977).
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cate symbols in DELPH-IN grammars, as it would lead to otherwise uninformative ambiguity

in analysis and thus run afoul of the goal of computational tractability, if not also the goal

of underspecifiability (Copestake et al., 2005).

2.2.2 Predications and the Semantic Graph

An instance of a predicate and its outgoing arguments is called a predication. The result-

ing structure from the composition of a sentence’s predications is the semantic graph, and

is useful for encoding the difference between, for instance, Dogs chase cats and Cats chase

dogs. Semantic graphs should be fully connected; when they are not, it is an indicator that

something went wrong in parsing the sentence, such as a bug in a grammar rule. Argu-

ments, or edges, have labels called roles, which are discussed in Section 2.3 with regards to

underspecification.

2.2.3 Surface Alignments

Surface alignments are the correspondences between semantic material, like predicates,

and positions in the linear linguistic signal (i.e., the surface form), like word or character

indices. Other terms for surface alignments are characterization and lnk values, and

often they are referred to by their feature names cfrom and cto. While surface alignments

aren’t true semantic information, their utility justifies their (optional) inclusion in *MRS

representations. For instance, they are used in the semantic similarity function Elementary

Dependency Matching (EDM; Dridan and Oepen, 2011) to compare two semantic represen-

tations for the same input sentence. In this dissertation I use them for node iteration (see

Section 5.4.1). I do not include surface alignments in transfer rules, and semantic subgraphs

that differ only by their surface alignments are considered equivalent by my algorithms.
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2.2.4 Morphosemantic Properties

Semantic predicates only encode lemmatic lexical content and certain kinds of sense distinc-

tions, as described above, and not any morphological variations (and associated semantic

contributions) present in the surface signal. A semantic representation would not encode

the morphophonological processes or their effects on the surface form, butmorphosemantic

properties are useful pieces of information that encode, e.g., verb tense or nominal number.

In MRS these are called variable properties because they are encoded on variables tied

to predications, whereas in DMRS, a variable-free representation, they are encoded on the

graph nodes. Morphosemantic properties are important for translation, as they are the only

difference between sentences like I called you and She had been calling them, although in my

dissertation I don’t give them any special treatment.

2.3 Underspecified Representation

DELPH-IN Semantics is part of a family of underspecified representations, where a

single representation instance subsumes one or more logical analyses, a family that includes

Underspecified Discourse Representation Structures (Reyle, 1993) and Hole Semantics (Bos,

1996). DELPH-IN Semantics can be underspecified in a variety of ways. One is model-

internal ambiguation, where an instance is underspecified over one or more more fully spec-

ified instances that can be represented by the semantic model of a grammar. This type of

underspecification includes the use of predicates or property values that are non-terminal

nodes in a predicate- or value-hierarchy, as well as the use of underspecified quantifier scope

via handle constraints (discussed below). Another is model-external agnosticism, where the

grammar engineer either decides to exclude some kinds of information from the semantic

model, or is unaware of the availability of the information, i.e., the model is de facto under-

specified because it has not been designed with the ability to make any such specification.

This second type includes the use of bleached semantic role labels (e.g., arg1 and arg2

instead of agent and patient), and course-grained lexical sense distinctions (also discussed
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below).

One important form of underspecification in DELPH-IN Semantics is the encoding of

quantifier scope ambiguity via handle constraints. Handle constraints describe the rela-

tionships between handles, which are labels identifying scopal positions. There are three

relationships for handle constraints, qeq, lheq, and outscopes, but as qeq is the only one

actively used in implemented grammars, I will not discuss the other two.6 Qeq, or equality-

modulo-quantifiers, also written =q, allows for a partial ordering of quantifiers and other

scopal predications in the scope tree. That is, if A is qeq B, then A must be above B in the

scope tree, but it needn’t be directly above (in which case one says A immediately outscopes

B), and other quantifiers or scopal things could intervene between A and B. See Copestake

et al. 2005 for a full account of how qeqs work, but for my research it is sufficient to say that

qeqs play an important role in tractably encoding quantifier scope information in MRS rep-

resentations, and that this information is necessary to make use of the standard machinery

for surface realization from MRS forms (Carroll et al., 1999; Carroll and Oepen, 2005).

Examples (8a) and (8b) show the two scoped forms for the sentence Every dog chases

some cat. (8a) is where every dog chases a cat but it may be a different cat for each dog,

and (8b) is where there is some single cat that all dogs chase.

(8) a. every(x, dog(x), some(y, cat(y), chase(x, y)))
b. some(y, cat(y), every(x, dog(x), chase(x, y)))

MRS combines these two formulae into a single representation, as shown in (9), where it

specifies that dog is in the restriction of every and cat is in the restriction of some, but does

not say which quantifier has higher scope. Each predication gets a label, and the second bag

in the structure encodes the relationships between handles.

(9) ⟨ h1, { h4:every(x, h7, h5), h8:dog(x), h10:some(y, h12, h11), h13:cat(y), h2:chase(x, y) },
{ h1 =q h2, h7 =q h8, h12 =q h13 } ⟩

6I will, however, mention that using lheq is equivalent to simply coindexing the handles, a tactic that is
employed by implemented grammars.
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2.4 Visual Presentation of DELPH-IN Semantics

There are several semantic representations within DELPH-IN Semantics described in this

chapter, and there are even more ways of encoding or visually presenting these represen-

tations. In (9) I used the inline form of the indexed view7 for MRS, but I simplified and

reordered the predicate symbols, simplified the variable names, and removed role labels,

morphosemantic properties, and surface alignments so that it would be easier to compare to

the logical formulae in (8a) and (8b). The full indexed version (9) is given in (10), which

contains all the information encoded in the MRS.8 When illustrating semantic phenomena,

e.g., in academic papers, the morphosemantic properties and surface alignments are often

omitted, and I will continue the practice in this dissertation.

(10)
⟨

h1, e3,

h4:_every_q⟨0:5⟩
(

ARG0 x6{PERS 3, NUM sg, IND +}, RSTR h7, BODY h5
)
,

h8:_dog_n_1⟨6:9⟩
(

ARG0 x6

)
,

h2:_chase_v_1⟨10:16⟩

 ARG0 e3{SF prop, TENSE past, MOOD indicative, PROG −, PERF −},
ARG1 x6,
ARG2 x9{PERS 3, NUM sg, IND +}

,

h10:_some_q_indiv⟨17:21⟩
(

ARG0 x9, RSTR h12, BODY h11
)
,

h13:_cat_n_1⟨22:26⟩
(

ARG0 x9

)


,

{h12 =q h13, h7 =q h8, h1 =q h2}

⟩

The indexed view is a standard way of presenting MRS structures in papers, and while it

has its proponents, I find the task of mentally assembling the semantic structure by locating

coindexed variables too cumbersome. In this dissertation I use an alternative dependency-

like graph view that allows one to more readily grasp the overall structure as well as see

interesting substructures. The indexed MRS in (10) is presented graphically in Fig. 2.2.

Note that, in addition to omitting the morphosemantic properties and surface alignments,

I also drop unused arguments (e.g., the body role on quantifiers) and variables that are

7The documentation for the ERG’s semantic analyses (http://moin.delph-in.net/ErgSemantics) call
this the Simple MRS view, but I find this name misleading because there is already a data format for
MRS with the same name, along with a similar presentation format. In addition, there is a data format
called Indexed MRS that is similar to the presentation format I use in this dissertation.
8There are in fact a few other pieces of information that can be encoded in an MRS, such as the surface

form of the sentence or of a predication, but these are not often given by grammar processors.

http://moin.delph-in.net/ErgSemantics
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uninformative in a graphical view (e.g., the top, index, and hole variables, as their presence

and position are entirely predictable from the edges they are part of).

_every_q _dog_n_1 _chase_v_1 _some_q_indiv _cat_n_1

h4 h8 h2 h10 h13

x6 e3 x9

top

index

rstr rstr

bv bvarg1

arg2

Figure 2.2: MRS graph view for Every dog chased some cat.

The components of the view require some description. Predicates are arranged on a

horizontal axis in the order output by the grammar processor, which is approximately the

surface order of the words that licensed the predicates. Labeled edges connecting predicates

to variables are role arguments, and those above the predicates are non-scopal while those

below are scopal. Non-scopal edges are solid lines ( ) and point to the intrinsic variable

of the target predicate, which is given as a variable in a circle ( e3 ). Scopal arguments are

dashed lines ( ) for qeqs and solid lines ( ) when the argument selects a label directly

(i.e., where the source immediately outscopes the target). Dotted edges ( ) select one or

more predicates that are in a scope conjunction, with the scope label given as a handle in

a dotted circle ( h2 ). Finally, the index and top edges point to the top variable and top

label, respectively.

2.5 SEM-I: The Semantic Interface

Before I describe the various representations of DELPH-IN Semantics below, I will explain

another part of the semantic framework that is useful for consumers of the representations:

the semantic interface (SEM-I; Flickinger et al., 2005b). Some semantic representations
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link their predicate or concept inventory to an external lexical database, as AMR (Banarescu

et al., 2013) does with OntoNotes (Pradhan et al., 2007) (see Section 2.12), but DELPH-IN

Semantics are built on an inventory internal to the grammar used to produce the repre-

sentations. A broad-coverage, deep grammar like the ERG (Flickinger, 2000) is a complex

system of many parts (for details see Section 4.3) with a vast collection of lexical information.

The semantic representations produced by a grammar are consistent with its model, with

all lexical predicates being defined by in the lexicon or the type hierarchy. If a downstream

application had to load the entire grammar in order to understand the semantic represen-

tations, it would be non-trivially burdened by the complexity and weight of the grammar.

In order to alleviate this burden, the information relevant to the semantic representations is

extracted from the grammars and put into a structure called a SEM-I.

A SEM-I contains descriptions of the elements in a semantic representation and their

range of values. It describes the possible variable types and the hierarchical relationships

between them; the common, if not ubiquitous, variable hierarchy used in DELPH-IN gram-

mars is illustrated by Fig. 2.3. The e variable is for eventualities, e.g., events and states,

as from verbs or adjectives. The x variable is for referential indices, such as from regular

nouns, pronouns, nominalized verbs, etc. The h variable is for handles, i.e., for identifying

scopal positions. Above these three basic variable types are their underspecified supertypes,

which are useful in a variety of situations. For instance, the ERG only requires one predicate

for two senses of believe, as in Kim believes Sandy, or Kim believes that Sandy slept, as the

second argument is constrained to be of type p, i.e., the supertype of a referential index (like

Sandy) or of a handle (like that which identifies the scope of Sandy slept).

u

i

e x

p

h

Figure 2.3: Variable hierarchy
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In addition to variable types, a SEM-I also encodes what morphosemantic properties

can be associated with variables of these types, and the range and hierarchical arrangement

of these property values. The allowed semantic roles are given with their most general

constraints on argument types. Finally, a SEM-I encodes the grammar-defined semantic

predicates defined with their supertypes (if the predicate exists in a hierarchy), arity, more

specific constraints on argument types, and constraints on morphosemantic properties.

As a SEM-I is an interface into the semantic framework defined by the grammar, meant

for grammar-external consumers, there may be situations where a SEM-I can shield the

consumer from irrelevant implementational details or provide abstractions that the grammar

itself does not make. For example, in the 1214 version of the ERG, its SEM-I defines

existential_q as a more user-friendly alias of def_udef_some_a_q. Beyond just user-

friendliness, these aliases also help keep the interface more consistent, as def_udef_some_a_q

is renamed to def_udef_some_a_no_q in a recent version of the ERG. This change would

be problematic for applications that targeted the original name, but not for those that used

existential_q. A second example is an abstraction I added to the ERG for Japanese-

English translation with the JaEn grammar.9 The existential_q quantifier abstraction is

useful when translating from Japanese, which does not have article determiners like a or the

in English, but it is too abstract and may be realized as a demostrative (e.g., this or those).

Japanese does have overt demonstratives, so these translations would be inappropriate when

no demonstrative existed in the Japanese sentence. Therefore I insert in the ERG’s quantifier

hierarchy a predicate def_udef_a_q that captures only a, the, and null quantifiers (allowed

in English when the quantifiee is plural, as in Dogs bark).10 The target grammar, upon

encountering def_udef_a_q from, e.g., the JaEn transfer grammar, realizes a quantifier

from the more restricted set, leading to more accurate translations.

Modifications to a SEM-I such as these can make life easier for downstream processors

of DELPH-IN Semantics (i.e., consumers of grammar-defined semantic models, such as the

9Thanks to Stephan Oepen and Francis Bond for the solution.
10The details of the implementation are given in Appendix A.2.



28

above which makes a convenient sub-class of quantifiers available for JaEn to use), but they

also carry risks. They often solve a specific problem, so there may be a limited range to their

utility and applicability. As they change the semantic model for a specific version of the

grammar, they have a limited life span. In my case, I altered the ERG’s semantic model to

address a specific deficiency for transferring Jacy semantic representations to representations

for the 1214 version of the ERG, but these modifications are not necessarily useful for other

tasks that use the ERG and the changes may become outdated with future versions of the

grammar.

Above I have described a SEM-I as an interface that helps downstream consumers of

semantic representations get at the semantic model defined by a grammar without having to

load and interpret the entire grammar. One could imagine extending it to map the DELPH-

IN Semantics model to external ontologies, as well. Roa et al. (2008), for instance, describe

a statistical technique for mapping more fine-grained semantic role labels from PropBank

(Palmer et al., 2005) or VerbNet (Kipper-Schuler, 2005), such as Experiencer or Theme, to

the bleached roles used in MRS. I only use a SEM-I for modifying the predicate hierarchy,

as described above, to assist transfer when the MRS semantic models for two grammars do

not have translationally equivalent predicate hierarchies. Next I will discuss the structure of

MRS instances.

2.6 MRS: Minimal Recursion Semantics

Minimal Recursion Semantics (Copestake et al., 2005) is the original semantic representa-

tion in DELPH-IN Semantics, and the progenitor of the succeeding representations. The

following is a brief description of MRS, adapted to modern usage and assumptions about the

representation. Each MRS instance is a tuple ⟨gt, i, R, HC, IC⟩. gt is the global top handle;

that is, no other handle may scope over gt. i is the top index, i.e., the intrinsic variable of

the main predication. i was not included in the original definition of an MRS structure, but

its usage is near-ubiquitous among modern DELPH-IN grammars, and therefore is included

in this definition. It often, but not always, points to the same EP as gt, and differs in cases
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where the outermost scope is not represented by the top EP in terms of argument structure,

as in The dog probably barks, where probably is the scopal top but barks is the index, or

when the top scope captures more than one EP, as in The dog barks loudly, where both barks

and loudly share the top scope, but again only barks is selected by the index. R is a bag of

predications (elementary predications, or EPs). HC is a possibly empty bag of handle

constraints (hcons), which are used to describe the scope tree. IC is a possibly empty bag

of individual constraints (icons), which are used to encode information structure, among

other things (Song and Bender, 2011; Song, 2014). Like i, IC also was not included in the

original definition, but unlike i it is relatively new and is thus employed by few grammars,

with the English Resource Grammar (Flickinger, 2000) being a notable exception.11

Elementary predications have their own internal structure described by the tuple ⟨p, l, v,

A⟩. p is a semantic predicate (also called a relation). l is a scopal handle (called its label).

v is the intrinsic variable (at times called the distinguished variable, characteristic

variable, or arg0 after the role the variable is the argument of). The label and intrinsic

variable at the EP level correspond to the top and index at the MRS level. A is a possibly

empty list of arguments, which may be non-scopal (the argument is a non-handle variable

that is the intrinsic variable of some other EP, or an underspecified variable if it is a dropped

argument), scopal (the argument is a handle which selects, directly or via qeq, one or more

EPs sharing a scope), or constant arguments (proper names, numbers, etc.). In the original

definition, the list of non-scopal arguments (“ordinary variable arguments” (Copestake et al.,

2005)) was separate from the list of scopal arguments, constant arguments are not mentioned

at all, and the intrinsic variable v had no special status. In the modern convention, however,

it is assumed that every EP has an intrinsic variable and each intrinsic variable is unique to

a single EP (excepting quantifiers, which do not have intrinsic variables). This convention

is called the intrinsic variable property. Prior to this convention, it was standard for

grammars to have linguistic analyses where some EPs have no intrinsic variable or where

11Currently the latest development version of the ERG employs icons, but they are not included in the
1214 version that I use for my experiments.
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multiple non-quantifier EPs share an intrinsic variable. These deviations lead to undesirable

interactions in processes that assume an MRS will have a particular shape, such as DMRS

conversion, and so recent efforts have tried to harmonize grammars to adhere to the intrinsic

variable property. While the ERG has been updated to the new convention, work is ongoing

for other grammars, such as Jacy (Siegel et al., 2016).

Handle constraints and individual constraints are simple triples ⟨lhs, rel, rhs⟩. For hcons,

lhs (given by the feature hi, or harg) is a handle-valued slot (also called a hole) selected

by the scopal argument of some EP; rel is the relation of the constraint, which is one of qeq,

lheq, or outscopes (see Section 2.3 for discussion on why I only consider qeq relations);

and rhs (given by the feature lo or larg) is the label (handle) of some other EP. I will not

consider icons in this thesis, but they differ from hcons in that lhs and rhs are instance

variables (e.g., intrinsic variables, not handles), and rel can be any pertinent relation defined

by a grammar.

A semantic algebra for MRS was created to ensure that semantic composition in a

constraint-based grammar produces well-formed MRSs (Copestake et al., 2001). However,

there is no systematic way to check a grammar for algebra compliance, so it’s possible for

the grammars to output ill-formed MRS outputs.

Figures 2.4a to 2.4e show the MRS structure of some fragments of varying complexity for

the sentence the large and gentle dog sleeps, as parsed by the 1214 version of ERG. Fig. 2.4b

shows the MRS structure for The dog, illustrating how the quantifier selects both the index

(via the bv (bound variable) role) and the label (via a qeq from the rstr role) of dog.

Fig. 2.4d shows the MRS for The large dog, expanding on the previous MRS with non-scopal

modification and illustrating how the rstr role selects a label that is shared by more than

one predicate, but the bv role still selects the single quantifiee. Fig. 2.4e expands on the

example yet again, showing coordinated modifiers in the context of the full sentence. In this

case, the non-scopal modifiers large and gentle select the modifiee, but they do not share

a label. They are unable to share the label with the modifiee because the coordinator and

shares its label with dog and immediately outscopes its coordinands, so it would be ill-formed
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for the modifiers to share a scope with the thing that outscopes them. Also note that the

_and_c has no direct edge with _dog_n_1.

2.7 RMRS: Robust Minimal Recursion Semantics

A common criticism of rule-based grammars like those developed within DELPH-IN is that

they are brittle, failing to produce analyses for some inputs, and that they are slow to arrive at

an analysis. An effort to combine the strengths of shallow processing techniques, like tagging,

with deep grammars led to the development of Robust Minimal Recursion Semantics (RMRS;

Copestake, 2004), which allows for underspecification of predicate symbols, argument roles,

and morphosemantic properties. RMRS also represents EPs in a Parsons-style notation

(Parsons, 1990) where each role argument is given first-class status, linked to their respective

EPs via a unique anchor variable.12 These anchor variables are an important advancement,

as they give each EP, including quantifiers, a unique identifier, which is something that the

intrinsic variables were unable to accomplish as they were not originally an obligatory part

of the formalism.

Outside of a few applications that utilized its capability for integrating shallow processing

techniques with deep grammars, such as DeepThought (Callmeier et al., 2004) and Heart of

Gold (Schäfer, 2007), RMRS did not really take off as a semantic representation, and I will

therefore not discuss it further in this dissertation.

2.8 EDS: Elementary Dependency Structures

The interpretation of MRS and RMRS representations can be computationally-intensive,

enough to preclude their use for things like semantic search applications, and the complexity

of the representations can make them cumbersome to work with for other tasks. Around

the same time as the development of RMRS, Oepen et al. (2002; see also Oepen and

Lønning 2006) developed the first variable-free dependency representation of MRS called as

12For Parsons (1990), the anchor variable was instead an event variable.
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_dog_n_1

x2

h1

top

index

(a) dog

_the_q _dog_n_1

h2 h1

x3

top

index
bv

rstr

(b) the dog

_large_a_1 _dog_n_1

e3 x2

h1

top

index
arg1

(c) large dog

_the_q _large_a_1 _dog_n_1

h2

e4 x3

h1

top

index

rstr

bv

arg1

(d) the large dog

_the_q _large_a_1 _and_c _gentle_a_1 _dog_n_1 _sleep_v_1

h1

h3

h4 h5 h6

e9 e8 e10 x7 e2

top

index

l-hndl r-hndl

rstr

bv

arg1

arg1l-index r-index arg1

(e) the large and gentle dog sleeps

Figure 2.4: MRS fragments of the large and gentle dog sleeps
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Elementary Dependency Structures (EDS). Conversion to EDS is lossy, as it removes scope

information in favor of representational simplicity. EDS is intended not to be a fully expres-

sive representation, but to facilitate downstream tasks like information retrieval (Kouylekov

and Oepen, 2014) or internal tasks like parse disambiguation (Toutanova et al., 2005). Like

RMRS, EDS makes use of unique identifiers for each EP, but unlike RMRS, these identi-

fiers are simple strings and not variables. In order to encode the relationships from scopal

arguments (which are no longer scopal in EDS), the concept of a representative node

was created which uses a set of heuristics to select the most salient node from the set of

nodes that formerly shared a scope. These heuristics make use of features based on the

graph topology as well as some grammar-specific disambiguators. These grammar-specific

features have been implemented for the ERG, but if other grammars want to fully utilize

the capabilities of EDS, they will need to define interface functions to allow the conversion

process to make use of information in the grammar.

2.9 DM: Bilexical Dependencies

Some users of DELPH-IN Semantics may desire the semantic structure to directly annotate

the input string rather than working with a detached representation. To satisfy those users,

DELPH-IN MRS Bilexical Dependencies (DM; Ivanova et al., 2012) further reduce EDS to

project the dependency graph directly onto the surface tokens. Conversion to DM makes use

of the features of EDS, such as the representative node selection, but also grants representa-

tions for tokens in the original sentence that are not included in other *MRS varieties, such as

the infinitival to or obligatory prepositions, although these additional nodes are disconnected

from the primary semantic graph. Since the source and target nodes of the dependencies in

DM are always surface tokens, predicates (both surface and abstract) are not used. Abstract

predicates in the source EDS that represent a binary relation, such as compound, may be

encoded as edge labels in the DM. Other abstract predicates from the EDS may be dropped

entirely, unless there is no other node label for the token they annotate.

Note that DM is surface-bound; i.e., it reattaches the semantic structure to the linear
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linguistic signal. However, while the nodes are bound to the surface tokens, they are a

dependency representation, and as such the edges are free to connect discontiguous (i.e.,

non-adjacent) semantic dependencies. This distinguishes them from other representations,

like syntax trees.

2.10 DMRS: Dependency Minimal Recursion Semantics

Dependency representations of MRS are easier to work with than MRS, but the lossy nature

of EDS and DM makes it difficult to map back to the grammars in order to, for instance,

realize sentences from the semantics. Copestake (2009), therefore, created Dependency Min-

imal Recursion Semantics (DMRS) as a dependency representation that maintains scope

information as edge attributes. It uses features from EDS, such as the selection of represen-

tative nodes for EPs that share a label in the MRS representation. Chronologically it was

developed after EDS, so one could say that DMRS is an extension of EDS, although they

followed separate development tracks. In terms of the information encoded, however, it is a

superset of EDS and a subset of MRS, so one could also say that EDS is a reduced form of

DMRS. For a constrained class of MRSs, conversion to DMRS is lossless. DMRS does not

represent the roles of dropped arguments, so for example the MRS representation for Kim

gives to charity would have an underspecified arg2 for the thing that is given (e.g., money,

time), but in DMRS it is missing entirely. This is not considered a lossy conversion because

the role’s absence is interpreted as being the same as a having an underspecified argument,

and the same sentences would be generated for both representations.13 Furthermore, the

13One MRS that would have a lossy conversion to DMRS involves multiple coindexed dropped arguments,
such as for the Japanese sentence in (ii). This sentence involves coordinated VPs with a shared, dropped
subject. In the MRS, the missing arg1 of both 進む susumu “advance” and 打つ utsu “hit” share the
same variable even though no EP has that variable as its intrinsic variable. In DMRS, the arg1 roles are
not represented by any links, so the association is lost.

(ii) ボール
booru
ball

を
-wo
-acc

進ん
susun
advance

で
-de
-inf

打つ
utsu
hit

“Step forward and hit the ball.” [jpn]
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missing arguments could be recovered by inspecting the predicate inventory of the SEM-I.

More details on the MRS→ DMRS conversion process are given in Section 5.1. Figures 2.5a

to 2.5e show DMRS fragments for the same examples as Figures 2.4a to 2.4e do in Section 2.6,

adapting the graph-view visualization for DMRS structures.

_dog_n_1

top

index

(a) dog

_the_q _dog_n_1

top

index

rstr/h

(b) the dog

_large_a_1 _dog_n_1

top

index
arg1/eq

(c) large dog

_the_q _large_a_1 _dog_n_1

top

index

rstr/h

arg1/eq

(d) the large dog

_the_q _large_a_1 _and_c _gentle_a_1 _dog_n_1 _sleep_v_1

top

index

l-hndl/heq r-hndl/heq

rstr/h

arg1/neq

arg1/neq

l-index/neq r-index/neq

mod/eq

arg1/neq

(e) the large and gentle dog sleeps

Figure 2.5: DMRS fragments of the large and gentle dog sleeps

Besides the encoding of scope information, DMRS contains nearly the same information as

EDS. They are both variable-free representations, with morphosemantic properties encoded

on nodes rather than variables. Unlike EDS, however, DMRS retains the sort (or type) of the
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intrinsic variable along with the node attributes.14 The retention of the scope information

allows a DMRS graph to be considered connected for MRS instances where two EPs share

only a label, a situation that is represented with a mod/eq edge (as in Fig. 2.5e).15 Due

to the greater recoverability of MRS structures, necessary for generation, from DMRS than

from EDS, I chose to use DMRS as the representation used in the extraction of transfer rules.

2.11 Summary of DELPH-IN Representations

There are a variety of semantic representations in the DELPH-IN ecosystem, each conceived

and designed for a different use case—MRS for transfer-based MT, RMRS for integrating

shallow parsing techniques, EDS for facilitating downstream processing tasks like parse rank-

ing or information extraction, DM for increasing the accessibility of DELPH-IN resources to

the broader community, and DMRS for extending dependency representations with scope

information—but they all ultimately derive from the original MRS representation, so they

share many of the same qualities. Table 2.1 presents a feature matrix of the kinds of in-

formation that are present in the *MRS variants described in this section. The presence

of the information is not always a simple yes or no answer, so where necessary I provide

notes to explain the situations. The representations are arranged in the order of decreasing

information density. Fig. 2.6 puts the representations (except RMRS) on an axis showing

what major features are lost (or gained).

2.12 Comparison to Other Frameworks

There are many semantic representations beyond DELPH-IN Semantics and in this section

I will briefly compare some of them to *MRS representations. Generally, the representations

listed below influenced or inspired my own research.

14The intrinsic variable type is generally recoverable from the SEM-I, but some predicates can differ. For
instance, color names in the ERG have x variables when they are nouns (yellow is my favorite color) and
e variables when they are adjectives (the yellow sun).
15In Copestake 2009 these were called undirected /eq edges. More recent versions of DMRS use the
directed variant.
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Table 2.1: Feature matrix of the prominent *MRS variants
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RMRS ✓ ✓ ✓ ✓ var ✓ ✓ ✓ ✓ ✓ ✓ ✓
DMRS ✓b ( )c ✓ ✓ int ✓ ✓d,e ✓f ✓g ✓ ( )d,e ( )h

EDS ✓ ✓ ✓ str ✓ ✓d,i ✓f ✓g ( )d,i

DM ✓ ( )j int ✓ ✓d,i ( )k ( )d,i

a intrinsic variables do not always uniquely select nodes; see discussion in text
b implicitly encoded by linking special nodeid 0 to top
c an extension encodes index as a graph attribute
d representative node of scopal set is chosen as sole target
e scopal relationship encoded on edge label
f properties exist on nodes rather than variables
g constant values exist as properties of nodes rather than pseudo-arguments
h support is planned but is not yet fully defined or implemented
i scopal relationship is dropped; arguments become non-scopal
j non-lexical abstract predicates (e.g., for compounding or subordination) are encoded as edge
labels; others (e.g., implicit quantifiers) are dropped

k constants are irrelevant as the surface tokens are part of the node labels

MRS ⊇ DMRS ⊃ EDS ⊃ DM

− variables
+ representative

node

− scope − predicates
+ surface

attachment
≈ abstract

nodes

Figure 2.6: Ordering of information density among MRS, DMRS, EDS, and DM
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Abstract Meaning Representation (AMR; Banarescu et al., 2013) is a representa-

tion that has grown in popularity over the past five years, although it was introduced much

earlier (Langkilde and Knight, 1998), building off of earlier work in the PENMAN project

(Penman, 1989; Kasper, 1989). While it, like DELPH-IN Semantics, encodes abstract struc-

tural semantics of sentences, its method of annotation is very different. The concept (i.e.,

predicate) inventory for AMR comes from OntoNotes (Pradhan et al., 2007) where possible.

AMR corpora are manually annotated in the spirit of the syntactic treebanks of the 1990s,

such as the Penn Treebank (Marcus et al., 1993). Annotators use their intuition to resolve

coreference and ambiguity, resulting in a single representation for a sentence. A set of guide-

lines (AMR, 2017) instruct the annotators on best practice. For example, annotators are

encouraged to decompose nouns into a verb and generic noun construction, where possible.

Teacher may be annotated by a graph meaning person who teaches, but, in contrast, the

decomposition of professor does not usually mean the same thing as the composed form, so

it is left as is. But it is not always obvious when one should or should not decompose things.

For instance, spy is not decomposed as person who spies, but opinion is decomposed to thing

that is opined. Quantifiers are generally not represented, nor is any distinction of scopal or

non-scopal argumentation. As such, negation is represented simply as a polarity change on

a single node. The most recent release of the main AMR dataset contains representations

for 39,260 English sentences (Knight et al., 2017). The PENMAN format used by AMR

was the inspiration for my use of the same format for singly-rooted DMRS structures (see

Section 5.5).

Discourse Representation Theory (DRT; Kamp et al., 2011) uses a compositional

representation (called Discourse Representation Structures, or DRS) that is concerned

with accurately expressing meaning in context, e.g., within a discourse. DRS is similar to

MRS in that it uses variables for events.16 The Groningen Meaning Bank (GMB; Bos et al.,

16Technically, MRS is a Davidsonian representation because semantic roles are associated with the event’s
predication, whereas DRS is neo-Davidsonian because roles are associated with the event. RMRS, however,
is similar to DRS in this way.
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2017) is the associated resource, containing representations for 10,000 open-domain texts.17

Boxer (Bos, 2015) is a tool that produces DRS from CCG (Bos et al., 2004; Steedman and

Baldridge, 2011) derivations. The compositional and event-based semantics may make DRS

a promising target framework for future adaptations of my methodology.

Lexical Functional Grammar (LFG; Dalrymple, 2001), like HPSG, is a syntactic

framework, and its f-structure is a deep representation of syntax that is used, for instance,

as the medium of transfer in machine translation (Hearne and Way, 2003; Graham et al.,

2009). F-structure encodes syntactic relationships but is abstracted (that is, detached) from

the surface word order. This makes it very similar to semantic representations in some ways,

but it, in contrast, models syntactic features such as subjects and objects instead of semantic

roles (e.g., agents, patients, or themes; or the bleached roles found in MRS: arg1, arg2).

LFG is also used as means of syntactic composition (as is usually done by grammars in the

HPSG framework) of MRS semantics, as for NorGram (Dyvik et al., 1999; Rosén et al., 2005).

The second of my methods for bilingually aligning semantic subgraphs (see Section 6.2) is

partially inspired by machine translation methods developed within the LFG community.

2.13 Chapter Summary

In this chapter I have given an overview of DELPH-IN Semantics—the representation I

operationalize for my research into the automatic extraction of machine translation transfer

rules. I described DELPH-IN Semantics as a symbolic, structural, compositional, underspec-

ified, and abstract representation of standing meaning (Sections 2.1 to 2.3), which are useful

properties for general-purpose semantic modeling and bilingual transfer. In Section 2.4, I

explained the visual representation of MRS that I use in this dissertation. The source of

semantics I use for extracting transfer rules come from implemented grammars of Japanese

and English, and in Section 2.5 I briefly explain how the SEM-I provides an interface into the

grammars’ respective semantic models. I describe the canonical MRS representation in Sec-

17Sentence counts are not available, but the 10,000 texts contain roughly 1.4 million tokens.
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tion 2.6, followed by the derivative representations RMRS (Section 2.7), EDS (Section 2.8),

DM (Section 2.9), and DMRS (Section 2.10). In Section 2.12, I briefly cover semantic repre-

sentations outside of DELPH-IN Semantics. In this dissertation, I primarily work with the

DMRS representation (e.g., in Chapter 5), but the grammars produce and consume MRS,

e.g., for transfer (see Section 7.1) so I make use of both representations.



41

Chapter 3

MACHINE TRANSLATION

Machine translation (MT) is one of the oldest subfields of computational linguistics with

a long and diverse literature but here I will provide a short overview of the aspects of MT rel-

evant to my dissertation. My work exists within the rule-based machine translation (RBMT)

paradigm but it also includes aspects of example-based machine translation (EBMT) and

statistical machine translation (SMT).

3.1 Rule-based Machine Translation

Rule-based machine translation (RBMT) in the DELPH-IN1 tradition begins with the Verbmobil

project (Wahlster, 2000), which pursued a method of semantic transfer that rewrote source

semantic inputs to target semantic outputs. The LOGON project (Lønning et al., 2004) con-

tinued and expanded this idea of semantic transfer with support for rule type hierarchies

and a chart-based search for the transfer process. For these early systems, the full transla-

tion pipeline, from analysis through transfer to generation, was constructed with hand-built

components. Statistical reranking models were applied to each pipeline component and as

an end-to-end reranker (Oepen et al., 2007; Velldal, 2008), which helped bridge the divide

between the rich, linguistically motivated representations of rule based systems and the data-

driven selectional models of statistical systems. Fully hand-built transfer grammars are slow

to develop and costly to maintain, so Jellinghaus (2007) devised a method of automatically

acquiring MRS transfer rules using a top-down argument crawling method and Nichols et al.

(2007) created transfer rules from bilingual dictionaries. Later work applied statistical word

alignment tools to automatically extract transfer rules from parallel corpora (Haugereid and

1DEep Linguistic Processing with HPSG INitiative: http://www.delph-in.net/
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Bond, 2011, 2012; Bond et al., 2011). One of my transfer pair extraction methods builds on

Haugereid and Bond (2011, 2012) and is described in Section 6.1.

Well before DELPH-IN-style RBMT, example-based machine translation (EBMT; Na-

gao, 1984; Sumita et al., 1990), also called memory-based translation (Sato and Nagao, 1990),

began as a data-driven MT paradigm separate from SMT and RBMT. In EBMT, transla-

tion fragments observed in parallel corpora are stored and used again later, allowing the

translation process to make use of the largest fragments available. Researchers in the LFG

framework applied this idea to their representation, leading to Data-Oriented Translation

(DOT; Way, 1999; Hearne and Way, 2003), which stored tree fragments instead of words or

phrases. In the major next step of this line of research, the principles of DOT were applied

to LFGs deep syntax2 via its f-structures (Graham et al., 2009; Graham, 2011). My second

transfer pair extraction method, described in Section 6.2, is inspired by this work in LFG

and also by Jellinghaus (2007).

3.2 Statistical and Neural Machine Translation

Rather than use hand-built rules, statistical machine translation (SMT) relies on automat-

ically inferred word and phrase alignments. Och and Ney (2003) describe Giza++, a tool

and iterative (i.e., expectation maximization, or EM) methodology for finding n-gram align-

ments. Lardilleux et al. (2012) offer an alternative, Anymalign, which does not iteratively

optimize via EM, but rather finds alignments by randomly sampling “sub-corpora” of the

training data. Anymalign focuses on low-frequency words, so by taking sub-corpora it makes

high-frequency words into low-frequency ones within a sampling.

SMT is often phrase-based,3 e.g., via the Moses toolkit (Koehn et al., 2007), but tree-

based models are also popular. Yamada and Knight (2001) describe a model that parses the

source sentence to a labeled syntax tree, then decodes to the target string. Chiang (2007)

expands phrased-based SMT beyond contiguous words and phrases with local reordering

2A syntactic representation detached from word order, thus being close to a semantic representation.
3A phrase in SMT, unlike in syntactic frameworks like HPSG, is an unstructured n-gram of word tokens.
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models to hierarchical phrases, which are empirically derived trees similar to syntax trees

and make it easier to apply global reordering models. Chiang (2010) then translates with a

source to target syntax (i.e., tree-to-tree) model. Gildea (2003) explored tree-to-string and

tree-to-tree alignment and Eisner (2003) learned non-isomorphic tree mappings.

These tree based methods are relevant to my dissertation because I align semantic de-

pendency structures which can be approximated as trees. Quirk et al. (2005), also Quirk and

Menezes (2006), used syntactic dependency trees and combined the principles of SMT and

EBMT to find treelets (i.e., the dependency-tree equivalent of a phrase). Aue et al. (2004)

used semantic dependencies instead of syntactic dependencies and found transfer mappings

for a graph-to-graph SMT system. A common way of mapping source to target structural

information is through synchronous context-free grammars (SCFGs), which first appeared

as syntax-directed transduction (Lewis II and Stearns, 1968), then as stochastic inversion

transduction grammars (Wu, 1997), and later as SCFGs (Lopez, 2008), e.g., as implemented

in the cdec (Dyer et al., 2010) and Joshua (Post et al., 2013) decoders. Ding and Arase

(2014) used SFCGs to perform syntactic dependency-to-dependency translation for English

and Japanese. Jones et al. (2012) use hyperedge replacement grammars to parse strings

into AMR (see Section 2.12), then transform the representation into the target string, thus

treating the AMR as an interlingua for translation. Using a meaning representation like

AMR as an interlingua is not recommended,4 but Xue et al. (2014) found that it was useful

for narrowing the differences between the languages.

More recently, neural approaches to machine translation (NMT) have become a main-

stream paradigm. The sequence-to-sequence models (Bahdanau et al., 2014) improve on

SMT’s token replacement and reordering strategies by reading in entire sentences (i.e., se-

quences), which are stored as an internal vector representation, then generating entire new

sequences in the target language, which allows it to make greater use of context than SMT

can. The addition of an attention mechanism (Luong et al., 2015) allows the system to focus

4See https://github.com/amrisi/amr-guidelines

https://github.com/amrisi/amr-guidelines
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on certain parts of the source sentence, which helps in long sentences and for translating

names. NMT, however, suffers from out-of-vocabulary issues as the model’s computational

complexity increases significantly with larger vocabularies (Cho et al., 2014). There has been

success in translating at the character level instead of the word level Lee et al. (2017), as the

vocabulary of characters is much smaller than that of words. Furthermore, the character-

level model is able to handle misspellings, neologisms, and code-switching into the target

language (or other languages, if the model was trained multilingually), and it works without

segmentation, which means it is not affected by segmentation errors by another tool. Others

have used NMT for sequence-to-dependency mapping (Wu et al., 2017), which was shown to

help in Chinese to English and Japanese to English tasks, and others have similarly found

success with incorporating syntactic information into NMT (Aharoni and Goldberg, 2017;

Chen et al., 2017). I do not use methods of NMT in this dissertation, but recent work

on neural parsing to DMRS (Buys and Blunsom, 2017) and neural generation from DMRS

(based on work by Konstas et al., 2017) inspire me to propose neural transfer as an area of

future research (see Section 12.2).

Research in SMT is driven largely by its automatic translation quality evaluation metrics.

Papineni et al. (2001) describe the BLEU metric, which is a measure of n-gram overlap

between a translation and a reference sentence. The BLEU metric has widespread adoption

within the machine translation literature, but it is known to have some deficiencies (see

Section 9.1). Numerous variants of BLEU have been proposed, such as the NIST metric

(Doddington, 2002), which gives more weight to certain n-grams and adjusts other penalties.

The METEOR metric (Banerjee and Lavie, 2005; Lavie and Agarwal, 2007) was developed

to be more robust to good kinds of variation (e.g., synonyms, minor word order differences,

etc.). I use these three metrics for evaluation, as described in Section 9.1. I use BLEU

because it is standard and METEOR because it is more adapted to the kinds of variation

that my systems are likely to produce. I use NIST because it is not as strict as BLEU about

conforming to a reference sentence but not as relaxed as METEOR.
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3.3 Chapter Summary

There are multiple paradigms and methods of machine translation and even more techniques

for fine tuning these methods to move the BLEU needle a little bit higher. I have described

a small selection of rule-based, example-based, and statistical machine translation methods

upon which I build my own methodology. Ultimately my implementation is built on top of

the LOGON transfer machinery but my methods for extracting transfer rules are inspired by

the Haugereid and Bond (2011, 2012) use of aligned predicate phrases, as well as observed

dependency fragments, similar to what was done for LFG (Hearne and Way, 2003; Graham

et al., 2009) and dependency treelets (Quirk et al., 2005; Quirk and Menezes, 2006).

My method typically requires the use of HPSG grammars to analyze and realize sentences.

In theory the neural parsing system of Buys and Blunsom 2017 could be used to get DMRS

representations from text, there is no check that the representations represent well-formed

semantics, and may thus be incompatible with the transfer rules. More likely is that the

robust generation techniques of Horvat et al. (2015); Horvat (2017) or Konstas et al. (2017)

could be used to realize sentences even for malformed transfer outputs. I discuss this latter

possibility in Section 12.2.

My transfer pair extraction methods may work with representations that are not DMRS,

such as AMR or some other dependency representation, but these mappings would require a

custom transfer solution, as the LOGON tools would be unable to accommodate a non-MRS

representation. While other dependency representations encode similar relationships, their

graphs are not structured like MRS representations, their edge and node labels are different,

and they may make different decisions about how to handle complex phenomena including

compounding, coordination, named entities, scopal modification, etc. As discussed in Chap-

ter 2, the *MRS representations have many useful properties for transfer and translation,

such as compositionality (which helps with consistency) and underspecification (which helps

with data sparsity). In the next chapter I give an overview of my translation system and

how a DMRS representation moves through the system to produce a translation.
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Chapter 4

SYSTEM OVERVIEW

In this chapter I provide a general system description for semantics-based machine trans-

lation with automatically extracted transfer rules. I begin with an overview of the translation

pipeline in Section 4.1. Section 4.2 gives an explanation of how I manage the information

that traverses through the pipeline. Summaries of the parsing, transfer, and generation pro-

cesses follow in Sections 4.3 to 4.5. Then I explain how candidate selection and evaluation

fits in the pipeline in Section 4.6.

4.1 Translation Pipeline

The translation pipeline takes a textual sentence as input and produce a textual sentence

as output. In order to get from the source sentence to the target sentence, the source

sentence is first analyzed, yielding zero or more source-language semantic representations.

Each source-language semantic representation is then transferred to zero or more target-

language semantic representations. Each target-language semantic representations is used to

generate zero or more candidate target-language sentences. A path from the source sentence

to a single parse, transfer, and realization is called a hypothesis, and the collection of all

paths from a single source sentence is a hypothesis set. In the last step, a single translation

is selected from the candidate realizations for each hypothesis set. A simplified illustration

of the translation process is given in Fig. 4.1.

Parse Transfer Generate Select

source
sentence

source
semantics

target
semantics

target
sentences

target
sentence

Figure 4.1: Simplified translation pipeline
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I use existing tools and resources for the parsing and generation steps. The HPSG

grammar-based processor ACE1 is the primary tool for transforming language representa-

tions, and is the central process for the parsing, transfer, and generation steps. For parsing

and generation I use existing grammars, but I customize the transfer grammars used in

my experiments. The selection step is implemented by me. Further explanation about the

internal components of these steps and the data flow between them will be given in this

chapter.

Each stage of the translation process can yield multiple results (p parses, x transfers, and

r realizations), so if no limits are placed on their outputs the search space quickly becomes

unmanageable. For example, if I simply took the first 5 parses, transfers, and realizations,

there would be up to pxr = (5)(5)(5) = 125 possible translations for each input sentence.

Furthermore, transfer and realization ranking models are relatively underpowered compared

to parse ranking models, so it is more likely for the preferred parse to appear in the top

p results than for the preferred transfer in the top x or preferred realization in the top r,

meaning I can potentially get better results by increasing the number of results for an item

at the cost of computing time. While each component is efficient at enumerating packed

results (Carroll and Oepen, 2005; Zhang et al., 2010) for a given input, it is still costly to

process many inputs. That is, it would be faster to enumerate 50 results from a single input

than 5 results from 10 inputs because the former only needs to perform chart parsing to

construct the packed forest once and then enumerate the results, while the latter performs

chart parsing 10 times. In terms of my translation pipeline, increasing the number of parses

is the most costly, because it increases the number of inputs to process for transfer and,

indirectly, realization. Therefore in my experiments I keep parses and transfers restricted to

5 each, but I allow up to 20 realizations, as illustrated in Fig. 4.2.

Velldal (2008) built the realization rerankers I use in my pipeline, which is a discriminative

log-linear model over derivation tree paths, similar to the established approach for parse

1http://sweaglesw.org/linguistics/ace/

http://sweaglesw.org/linguistics/ace/
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Parse Transfer Generate

Select

p=5 x=5 r=20
⧸

… ⧸… ⧸… ⧸… ⧸
Transfer … ⧸… ⧸… ⧸… ⧸… ⧸
Transfer … ⧸… ⧸… ⧸… ⧸… ⧸
Transfer … ⧸… ⧸… ⧸… ⧸… ⧸
Transfer … ⧸… ⧸… ⧸… ⧸… ⧸

Figure 4.2: Pipeline fan-out

reranking (Toutanova et al., 2005). Velldal also built a generative n-gram model over realized

tokens into the realization reranker, a simpler transfer reranker that trains an n-gram model

of EDS triples (Oepen and Lønning, 2006), and an end-to-end translation reranker that uses

a log-linear model taking the scores of the previous three rerankers as features, but I do

not make use of these models. ACE only fully utilizes the existing parse reranking model.2

For realization ranking, ACE uses the discriminative model, but not the n-gram model, and

there is no reranking of transfer outputs. The goal of my research is not to create a system

with high-quality top-1 outputs, but to increase the coverage of the transfer grammar and

to increase its capability to produce high-quality outputs. The lack of the transfer reranker,

n-gram realization reranker, and end-to-end reranker is therefore not a big issue, as I can

examine all the translation outputs for an input item rather than only the top 1. Section 4.6

2ACE 0.9.26, which I use, unlike the LKB (Copestake, 2002) only incorporates the discriminant model
for parsing and generation, and not the n-gram model for generation or MRS-triple model for transfer.
Future versions of ACE may include these models.
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describes how I evaluate the quality when considering all outputs.

4.2 Pipeline Information Management

At the simplest conceptual level, a source sentence is fed to the parser, the relevant data is

fed through to each component, and a target sentence is produced, but there is more informa-

tion being passed around than is described by this view. Each abstract component (parser,

transferer, generator, and selector) takes a data structure containing the relevant represen-

tation along with metadata describing the representation and where it came from. These

data structures are implemented as a variant schema of [incr tsdb()] (Oepen and Flickinger,

1998) tables, allowing the results of the full translation pipeline to be stored in one profile

(i.e., database). See Appendix B for a description of these structures.

Bond et al. (2011) used the [incr tsdb()] grammar profiling software (Oepen and Flickinger,

1998) to manage similar kinds of information in their machine translation pipeline. The stan-

dard [incr tsdb()] schema does not allow a single profile to be used for the whole machine

translation pipeline, as it only has one table for storing system outputs. It also contains

many tables useful for grammar profiling, but irrelevant for machine translation. Bond et al.

circumvented the single-profile limitation by storing the profiles generated by each compo-

nent as nested directories. That is, they had one profile for parse results, then separate

transfer profiles for each hypothesis (i.e., one containing the first parse result for each item,

another for the second parse result, etc.), and a further level of similar nesting for realization

results for each transfer profile. I prefer to keep one profile for the whole pipeline with sep-

arate tables for the outputs of each component, and with none of the irrelevant tables from

the standard schema. Rather than embed result identifiers from earlier tasks into directory

names, I store them explicitly as columns in the tables. This approach is functionally equiv-

alent to that of Bond et al., but I find it less cumbersome to work with and more efficient

with disk space.

One drawback of my approach is that the [incr tsdb()] software does not work with non-

standard schemas, and ACE does not, by itself, maintain metadata during processing. There-
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fore I wrap the components with a modulator-demodulator mechanism for pairing processor

outputs with the corresponding metadata from the inputs. For example, the modulator

wrapping the parser extracts the source sentence (i-input) field from an input item and

feeds it to the parser. The demodulator collects all the results for that sentence and assigns

the original item’s identifier to each result’s item id (i-id) field, since the parser does not

keep track of that information itself. This approach is also used in the transferer, copying

both the item id and the parse id, as well as the generator, copying the item, parse, and

transfer ids. Thus, each translation hypothesis contains the information needed to recover

its original item, parse result, and transfer result.

4.3 Parsing

Input sentences are parsed using one of the existing broad-coverage HPSG grammars with

the ACE processor, yielding zero or more semantic representations per input sentence. I use

the English Resource Grammar (ERG; Flickinger, 2000) for English sentences and the Jacy

grammar (Siegel et al., 2016) for Japanese. Note that both the ERG and Jacy are used for

parsing when I build a transfer model (summarized below in Section 4.4), but at run-time

the translation pipeline parses with Jacy and generates with the ERG.

Modulate Parse Demodulate

Parsing
parameters

Source
grammar

source
item

source
sentence

source
semantics

parse
results

item info

Figure 4.3: Expanded view of the parsing component

Fig. 4.3 illustrates the data flow of the parsing component. In my experiments, the parse

process is ACE and the source grammar is Jacy. The parsing parameters include constraints

such as the number of results (p) to allow, memory or time limits on processing, whether
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the input is pre-tokenized, etc. See Chapter 9 for information about the parameters used in

my experiments. For each source item passed to the modulator, the sentence is sent to the

parser, and between zero and p semantic representations are produced. The demodulator

takes the information from the input item and pairs it with each semantic output, resulting

in parse results that are sent to the next step.

The core of the parser (i.e., parse, parsing parameters, and source grammar) utilizes a

number of subsystems for processing each input sentence. The sentence may be pre-tokenized

(e.g., Japanese data for Jacy is tokenized using MeCab morphological analyzer (Kudo, 2005)),

or it will be tokenized with grammar-defined rules (using REPP (Dridan and Oepen, 2012))

to separate individual lexical elements from each other and from punctuation, and to remove

extra-linguistic material like HTML markup. If the tokens can be matched with lexical

entries in the grammar, the token-mapping stage (Adolphs et al., 2008) takes those tokens

and produces feature structures that the grammar can use for parsing. The grammar rules

are then applied via a chart-style parsing algorithm with unification of feature structures.

For each input sentence, many parses may be found, and a parse-selection model ranks them.

The semantic representations constructed during parsing are specific to the grammar and

grammar version that produced them, so the representations are normalized on output to

a grammar-external variant via a variable-property-mapping (VPM). The VPM can change

variable names (e.g., event5 → e5), and can add, remove, or modify variable properties,

such as those for tense/aspect or person/number/gender.

4.4 Transfer

The transfer component (Lønning et al., 2004) takes a semantic representation as input and

produces zero or more target semantic representations. Transfer is a function built into both

ACE and the LKB, and while it utilizes many structures used in monolingual grammars

(e.g., typed feature structures, VPMs), it is not a unification-based process like with parsing

and generation, but rather a graph-rewrite process. The purpose of transfer is thus the

transformation of semantic representations. Generally the source and target representations
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are MRSs defined by grammars for different languages (i.e., transfer for translation), but it is

also possible to target the same language or grammar as the input (e.g., for summarization),

or to use source or target MRSs that do not come from grammars (e.g., from a string-to-

graph parser (Buys and Blunsom, 2017) or to a graph-to-string generator (Horvat et al.,

2015)). This dissertation is only concerned with transfer for translation.

A transfer grammar encodes the mapping between representations, and it is a separate

grammar from those corresponding to the source or target representations. Unlike mono-

lingual grammars, a transfer grammar is not reversible;3 in order to flip the source→target

direction, a separate transfer grammar is required. Transfer grammars can be much larger

than monolingual grammars, as they cover the semantics defined by two different monolin-

gual grammars. I use and build on the JaEn transfer grammar (Bond et al., 2005, 2011) for

translating from Japanese (as analyzed by Jacy) to English (as analyzed by the ERG).

The core of a transfer grammar defines rule types for MRS transfer rules (MTRs),4 a small

number of hand-written MTR instances and possibly some automatically generated MTRs

(e.g., enumerated number names), and also other technical particulars, such as the variable-

property mappings tailored to the source and target grammars and the order of inclusion of

files containing MTRs. The hand-written MTRs include monolingual fix-up or normalizing

rules, which prepare the source-representation outputs or clean up the transfer outputs in

order to streamline the transfer process. The hand-written MTRs also include some bilingual

instances that capture correspondences that are difficult to acquire automatically. Figs. 4.4

and 4.5 show two hand-written MTRs: the first normalizes the predicates for the kanji

and hiragana orthographic variants 分かる wakaru and わかる wakaru, both meaning “to

understand”, and the second captures the idiomatic translation 嘘をつく uso-wo tsuku

“tell a lie”. The second is one that my methodology could extract automatically, while the

first is not. MTR application is ordered, so the order of MTR file inclusion is important

for translation performance. This definition includes two placeholder files which will be

3Parts of transfer are reversible, but as a whole a transfer system is not reversible.
4The components of MTRs are described in Section 7.1.1.
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filled by the single and multi-word expression (MWE) MTRs, respectively, that I create (see

Chapter 9). Note that this ordering is separate from the automatic rule ordering I perform,

which is the order of rules within a file, as described in Section 7.2.2.

wakaru_v_1--wakaru_v_3_jf := arg12_v_mtr &
[ INPUT.RELS < [ PRED "ja:_wakaru_v_1_rel" ] >,

OUTPUT.RELS < [ PRED "ja:_wakaru_v_3_rel" ] > ].

Figure 4.4: Monolingual MTR in JaEn for normalizing alternate orthographies

tsuku-lie := arg12_v_mtr &
[ CONTEXT.RELS < [ PRED "~^ja:_uso_n", ARG0 #x ] >,

INPUT.RELS < [ PRED "ja:_tsuku_v_6_rel", ARG0 #2 ] >,
OUTPUT.RELS < [ PRED "_tell_v_1_rel" ] > ].

Figure 4.5: Hand-written MTR for the idiomatic 嘘をつく uso-wo tsuku “tell a lie [lit:
breathe a lie]”

The core transfer grammar is augmented with automatically extracted MTRs which make

up the majority of the rule instances. This augmented, or customized, transfer grammar has

rules selected for a particular set of inputs or for a genre. In the methodology employed by

the JaEn transfer grammar, the rule instances in the extended grammar are automatically

extracted from bilingual corpora (Bond et al., 2011). Previous efforts relied on matching

semantic templates to predicates found by a bilingual n-gram aligner (Haugereid and Bond,

2011, 2012). I also use an n-gram aligner to find translationally equivalent predicates but,

in contrast, I extract the rules without the use of templates. I also align semantic subgraphs

directly, i.e., without the n-gram aligner outputs, as a second method. Extracted transfer

pairs are kept in a transfer pair store, and a subset of this store is selected for a transfer task.

The selection of the subset is partially for performance reasons—the larger the grammar, the
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more memory for storage and time for processing it requires—and partially because I want

to filter out bad transfer pairs that introduce noise into the hypothesis set.
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Figure 4.6: Building the transfer pair store

The process of building transfer pair stores for the two experimental systems (see Chap-

ter 6) is illustrated in Fig. 4.6. The source and target semantic representations in the bilin-

gual semantic (bisem) corpus (the result of parsing the bitext corpus with the source and

target grammars) are fed to both the Linearized Predicate Alignment (LPA) and Subgraph

Alignment (SGA) transfer-pair extractors. LPA (see Section 6.1) linearizes the predicates,

bilingually aligns n-grams of predicates, then uses those alignments with the original seman-
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tic representations to extract bilingual semantic subgraphs. SGA (see Section 6.2) is roughly

the inverse of LPA. First, unaligned subgraphs are extracted from the semantic representa-

tions, then the source subgraphs are paired with every compatible target subgraph within a

bisem pair, and finally the paired subgraphs are counted in order to build a statistical model

over the pairs. The output of both systems—bilingually paired semantic subgraphs—are

then subjected to the same kinds of filters (see Section 6.3), although with different param-

eters, and put into their respective transfer pair stores. During a transfer task, a subset of

task-relevant pairs will be selected from the stores, converted into the transfer rule format

(see Section 7.3), and compiled into a customized transfer grammar.
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Figure 4.7: Expanded view of the transfer component

Fig. 4.7 illustrates the data flow of the transfer component. The main processes in this

component mirror those for parsing, but I add two more processes in order to enable exper-

imentation on transfer grammars. The select pairs process selects a subset of the extracted

transfer pairs (from the transfer pair store) for use in the transfer grammar. Transfer pa-

rameters inform the selection about constraints relevant to a current experiment, such as

filters on the size or shape of semantic subgraphs (see Section 6.3). Also, all incoming source

semantic representations are inspected so only relevant transfer pairs are selected (see Sec-

tion 7.2), which keeps the transfer grammar to a manageable size. The make transfer rules
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process then converts the subgraph pairs into an MRS transfer rule, as described in Sec-

tion 7.3. The compile grammar process then uses these transfer rules with the core JaEn

grammar to create the transfer grammar used in the transfer process.

4.5 Generation

Input semantic representations to the generator produce zero or more realized sentences.

For the translation pipeline, only the ERG is used for generation, as English is the target

language in my experiments. A VPM maps variable properties to the form required by the

target grammar. Fig. 4.8 illustrates the data flow of the generation component.

Modulate Generate Demodulate
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parameters

Target
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transfer
results

target
semantics

target
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generation
results

item/parse/transfer info

Figure 4.8: Expanded view of the generation component

4.6 Translation Selection

The generator produces r realizations for the x transfers and p parses of an item, and with the

constraints on results I use in my experiment, this could yield potentially (5)(5)(20) = 500

realizations in a hypothesis set, so I implement two methods for selecting a representative

realization from each set, following the lead of Oepen et al. 2007. The first method, First,5

selects the first available realization within a hypothesis set, while the second method, Or-

acle, selects the hypothesis that maximizes the BLEU score for the item. The data flow for

the First and Oracle methods are shown in Figs. 4.9 and 4.10.

5Oepen et al. (2007) call this first translation.
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Figure 4.9: Expanded view of the selection component: First method
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Figure 4.10: Expanded view of the selection component: Oracle method

The First method selects the first available realization from the group of realizations with

the same item-id. This method effectively selects the highest ranked parse resulting in a

realization, the highest ranked transfer resulting in a realization, and the highest ranked

realization, each according to their respective ranking models, if any. Fig. 4.11 shows an

example of first-selection. In the example, the first parse (id 0) has two transfers but neither

of them have any realizations, and the second parse (id 1) has no transfers, so these are both

skipped. The third parse (id 2) has two transfers, both with realizations, so the first transfer

and its first realization are selected.
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Figure 4.11: First-selection of translation hypotheses
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In order to find the realization that maximizes the BLEU score, the Oracle method

accumulates all realizations for an item, then calculates a smoothed BLEU score6 for each

one compared to the reference translation. The realization, and thus its hypothesis path,

with the highest score is then selected, regardless of the order or reranking scores for the

hypotheses’ parses, transfers, and realizations. This method can only be performed for

evaluation, as an online system would not have access to reference translations. The goal

of this method is to show the capability of the system to produce high-quality translations,

i.e., the upper bound of its performance. With better reranking on the pipeline components

and for end-to-end translation, the translation selected by the First method could become

the one selected by the Oracle method as well.

4.7 Chapter Summary

This chapter has described the overall architecture of the machine translation pipeline I utilize

in my experiments. The primary stages of parsing, transfer, and realization expand the search

space of translations available to my systems, and the selection stage narrows that search

to a single translation for each input item. While I’m using existing tools and resources,

namely the ACE processor, the Jacy and ERG monolingual grammars, and the core JaEn

transfer grammar, I have built my translation pipeline around these tools and resources

so that I can track translation hypotheses throughout the process. The pipeline code and

accompanying scripts for data preparation are freely available as the XMT package at https:

//github.com/goodmami/xmt. The knowledge source of the transfer stage, the transfer pair

store, is built using information from the parsing stage, using bilingual inputs. Later chapters

describe how I extract transfer rules to augment the transfer grammar (Chapters 5 to 7) and

design experiments (Chapters 8 and 9) in order to evaluate the methods (Chapters 10 and 11).

6BLEU scores are meaningful when computed for a large corpus, but less so when comparing individual
items. The smoothed score helps in this regard. See Section 9.1 for more information.

https://github.com/goodmami/xmt
https://github.com/goodmami/xmt
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Chapter 5

SEMANTIC OPERATIONS

The automatic extraction of transfer rules involves the manipulation, inspection, and

tabulation of semantic representations, so in this chapter I cover a number of the semantic

operations I use in my extraction methods. Semantic transfer as implemented by the LOGON
transfer machinery (Lønning et al., 2004) is a resource-sensitive rewrite process on MRS

structures (see Chapter 7 for more information), but much of my workflow operates on DMRS

(Copestake, 2009) data, so in Section 5.1 I describe the conversion from MRS to DMRS, and

in Section 5.2 I describe the conversion from DMRS back to MRS. I also describe various ways

of inspecting DMRS structures, from semantic tests in Section 5.3 to traversals in Section 5.4.

The standard way of serializing DMRS is in an XML format, which is neither compact nor

an intuitive representation for semantic dependencies, so in Section 5.5 I define a procedure

to serialize DMRS into PENMAN notation, as well as a normalization procedure to make

equivalent PENMAN-encoded DMRS structures string-comparable. Directly relevant to the

automatic creation of transfer rules from corpora is the extraction of semantic subgraphs,

described in Section 5.6, and the simplification of DMRS representations in Section 5.7.

5.1 MRS to DMRS Conversion

In Section 2.6 I explained how MRS is an expressive meta-level language for encoding, e.g.,

logical form, and in Section 2.10 I described DMRS as a dependency representation that

captures nearly all of the information encoded in MRS. One principle difference is that MRS

captures quantifier scope through label sharing, where DMRS encodes label equality between

two nodes on the edge connecting them, thus full scopal conjunctions (e.g., for more than two

nodes) can be recovered by traversing the graph to find transitive equalities. The process for
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converting from MRS to DMRS was first described in theoretical terms in Copestake 2009

with a Lisp implementation in the LKB (Copestake, 2002). Here I give a more concrete

description of the conversion process based on my Python implementation in PyDelphin.

5.1.1 Converting Elementary Predications to Nodes

The first and simplest procedure is the conversion of Elementary Predications (EPs) into

nodes, as shown in Algorithm 1. The procedure iterates through all the EPs in the MRS

instance and creates exactly one node for every EP. EPs in the MRS formalism do not have

unique identifiers so one is assigned to each new node.1 The EP’s predicate is copied over

directly to the node. As DMRS does not have variables, any variable properties in MRS for

some variable v are instead assigned to the node whose corresponding EP has the intrinsic

variable v. DMRS properties2 contain an additional property cvarsort that stores the type

of the original variable.3 DMRS nodes do not contain arguments as EPs do, but they do

contain the values of any constant argument, which are pseudo-arguments in MRS. So for

the final conversion step the value of the EP’s carg role is assigned as the node’s carg

attribute.4

1Conventionally node identifiers are integers starting from 10,000 but I start from 1 in Algorithm 1.
2In DMRS, properties are called sortinfo. I call them properties here.
3This information is useful in some specific cases, such as color names. In the ERG’s analysis of colors

the intrinsic variable of the color’s EP will be an e (eventuality) when used as an adjective (e.g., She ate
the red apple or The apple is red) but will be an x (instance) when the color is used as a noun (e.g., Red is
her favorite color). Some could argue that this information is recoverable from an analysis of the semantic
graph; e.g., when the color is quantified over, it’s EP’s arg1 role will be unfilled.
4In Algorithm 1 I hard-code the constant-argument role carg. While this role name is customizable

in some grammar processors, such as the LKB, no grammar to my knowledge has ever used a different
role name. PyDelphin also allows the name to be customized, defaulting to carg. In DMRS, the carg
attribute is defined as part of the schema, which is available at http://svn.emmtee.net/trunk/lingo/
lkb/src/rmrs/dmrs.dtd.

http://svn.emmtee.net/trunk/lingo/lkb/src/rmrs/dmrs.dtd
http://svn.emmtee.net/trunk/lingo/lkb/src/rmrs/dmrs.dtd
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Algorithm 1 Converting MRS EPs to DMRS Nodes
Input: R is a list of Elementary Predications as ⟨pred, label, var, arg⟩ tuples
Output: N is a list of Nodes as ⟨id, pred, prop, carg⟩ tuples, where |N | = |R| and Ni

corresponds to Ri

1 function Nodes(R)
2 for i←1, |R| do
3 pred ← Rpred

i

4 Prop ← VarProps(Rvar
i ) ∪ {("cvarsort",VarSort(Rvar

i ))}
5 carg ← RArg

i ("CARG") ▷ Constant argument may be nil
6 Ni ← ⟨i, pred,Prop, carg⟩

5.1.2 Representative Node Selection

The conversion of MRS argument structure and quantifier scope to DMRS links is more

complicated than the conversion of EPs to nodes and one contributor to that complexity

is representative node selection. Representative node selection is described in Sections 2.8

and 2.10 as that which allows EDS (Oepen et al., 2002; Oepen and Lønning, 2006) and DMRS

to encode the scopal arguments of MRS as regular graph edges. Due to its importance in

MRS to DMRS conversion and its relative complexity, I describe the process here separate

from the creation of links, which is covered in Section 5.1.3. Algorithm 2 defines the process

for finding representative nodes, although it is implemented as finding the indices of EPs

that correspond to representative nodes.

Algorithm 2 Finding the indices of representative EPs
Input: R is a list of Elementary Predications as ⟨pred, label, var, Arg⟩ tuples
Input: h is the label shared by some non-empty set of EPs in R
Output: I is a list of indices of representative EPs in R, sorted by representativeness

1 function RepresentativeEpIndices(R, h)
2 Conj ← {i ∈ {1, . . . , |R|} : Rlabel

i = h} ▷ Indices of EPs sharing label h
3 Vars ← {Rvar

i : i ∈ Conj} ▷ Intrinsic variables in Conj
4 Reps ← {i ∈ Conj : (∄ role)[RArg

i (role) ∈ Vars]}
5 I ← RepSort(Reps,Conj, R)
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For a list of EPs R and a label h, I first find the indices of the subset of EPs that

share the label (the EP conjunction) and assign them to the variable Conj (line 2). For

notational convenience, I also assign the set of intrinsic variables for this EP conjunction to

the variable Vars, which is used in the following line. The indices of representative EPs are

then defined (line 4) as the subset of Conj where the EP at index i (Ri) has no outgoing

arguments to other EPs in the conjunction (i.e., EPs with a role argument value that is in

Vars). This subset of Conj, assigned to Reps, will have at least one index, but it may have

more than one. When there is more than one index in Reps, however, not all correspond

intuitively to the most representative node. Therefore, in line 5, I call RepSort() on the

set of Reps, which prefers EPs that are either quantifiers or quantifiees,5 then those with the

most incoming edges in the conjunction (the one(s) most often modified), and any remaining

ties are resolved by preferring lower values of the index itself (i.e., those that come first in

the original order). The sort thus returns a list ordered by representativeness which allows

me to select a single most representative EP. The purpose of returning a sorted list rather

than Reps will become clear after the following example.

_the_q _dog_n_1 poss def_explicit_q _tail_n_1 _long_a_1 _bark_v_1

h4

h7

h8 h13 h1

x3 e12 x9 e14 e2

top

index
bv

rstr

arg1

arg2 bv

rstr

arg1

arg1

Figure 5.1: MRS for The dog whose tail is long barked.

5These are in fact separate cases, as a quantifier and its quantifiee should never be in a conjunction. When
a quantifier is in a conjunction, it is likely an instance of predicate modification where the quantifier
itself is modified, as in nearly every dog barks. When a quantifiee is in a conjunction, it is likely a nominal
entity being modified, as the EP for dog is in Fig. 5.1.
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Consider the MRS, as analyzed by the ERG, for the dog whose tail is long barked in

Fig. 5.1.6 The label h7 captures an EP conjunction of three EPs—_dog_n_1, poss, and

_long_a_1—but there is no explicit argument of _long_a_1 that selects _dog_n_1, nor

transitively via poss, so DMRS argument links cannot capture the full scopal conjunction.

There are therefore two representative EPs, _dog_n_1 and _long_a_1, and two choices for

inserting a mod/eq edge between them: one from _long_a_1 to _dog_n_1, as shown in

Fig. 5.2; and one from _dog_n_1 to _long_a_1, as shown in Fig. 5.3. The first option,

where _dog_n_1 is being modified, is the more intuitive one, as dog is primary entity under

discussion in the dog whose tail is long, and it is selected by the RepSort() function as

_dog_n_1 is the only one being quantified.

_the_q _dog_n_1 poss def_explicit_q _tail_n_1 _long_a_1 _bark_v_1

top

index

rstr/h

arg1/neqarg2/eq

rstr/h

arg1/neq

arg1/neq

mod/eq

Figure 5.2: DMRS for The dog whose tail is long barked.

_the_q _dog_n_1 poss def_explicit_q _tail_n_1 _long_a_1 _bark_v_1

top

index

rstr/h

arg1/neqarg2/eq

rstr/h

arg1/neq

arg1/neq

mod/eq

Figure 5.3: Alternative DMRS for The dog whose tail is long barked.

6The example is a slightly simpler version of the one given in Copestake 2009: the dog whose toy the cat
bit barked.
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5.1.3 Converting Elementary Predications and Handle Constraints to Links

With the definition of representative node selection in Section 5.1.2, I can now define link

creation. The procedure, shown in Algorithm 3, has two main sections: the first creates

DMRS links that correspond to MRS arguments (called argument links), with each link’s

target (to) and post-slash label (post) determined by the nature of the MRS argument;

and the second part finds any necessary links to capture relationships not covered by the

argument-derived links (non-argument links).

The argument links are created first (lines 3–23), from MRS arguments. Of these, links

for the restriction (rstr role) of quantifier EPs are handled first, separate from the other

argument links.7 For all other EPs, I iterate over each role argument and create the ap-

propriate links for non-scopal arguments, label-selecting arguments, and hole-selecting (qeq)

arguments. For non-scopal arguments, the target EP is found via its intrinsic variable, which

is the value of the argument. If the target EP shares a label with the source EP, the link

gets a post of EQ, otherwise it is NEQ. For label-selecting arguments, the target is the first

representative EP for the label, and the post is HEQ. Finally, for hole-selecting arguments,

the hole is qeq the label of an EP conjunction containing the target, which is then selected

as the first representative EP for the label. The post for hole-selecting arguments is H.

Non-argument links are created last (lines 24–30) fromMRS label equalities not evidenced

by argument links. I find these by looking for representative EP lists with more than one

element, and take the first in the list as the most-representative. All other EPs in the list of

representative EPs are dependents, and I create a link with a special MOD value for the role

and EQ for post.

5.2 DMRS to MRS Conversion

Converting to DMRS from MRS is not as straightforward as MRS to DMRS conversion, as

unpacking and reassembling the information in the nodes and links to EPs and qeqs involves

7For quantifiers, only the restriction argument is made into a link for reasons discussed in Copestake 2009.
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Algorithm 3 Converting MRS EPs and qeqs to DMRS Links
Input: R is a list of Elementary Predications as ⟨pred, label, var, Arg⟩ tuples
Input: Q : lhs→ rhs is a function mapping a hole lhs to the label rhs it is qeq
Output: L is a list of Links as ⟨from, to, role, post⟩ tuples

1 function Links(R,Q)
2 N ← Nodes(R)
3 for i←1, |R| do ▷ Argument links
4 from ← N id

i

5 if Ri is a quantifier then
6 to ← N id

j , where Rvar
j = Rvar

i , i ̸= j ▷ j is the index of the quantified EP
7 append ⟨from, to, "RSTR", "H"⟩ to L
8 else
9 for all ⟨role, val⟩ ∈ RArg

i do
10 if val is the intrinsic variable of some EP in R then
11 if Rlabel

i = Rlabel
j , where Rvar

j = val then ▷ Do they share a label?
12 post ← "EQ"
13 else
14 post ← "NEQ"
15 else if val is the label of some EP in R then
16 j ← first index in RepresentativeEpIndices(R, val)
17 post ← "HEQ"
18 else if val is a hole in Q then
19 rhs ← Q(RArg

i (role))
20 j ← first index in RepresentativeEpIndices(R, rhs)
21 post ← "H"
22 to ← N id

j

23 append ⟨from, to, role, post⟩ to L

24 for all h ∈ {rlabel : r ∈ R} do ▷ Non-argument links
25 I ← RepresentativeEpIndices(R, h)
26 if |I| ≥ 2 then
27 from ← N id

i , where i← I1
28 for j←2, |I| do
29 to ← N id

i , where i = Ij
30 append ⟨from, to, "MOD", "EQ"⟩ to L
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several partial steps. The algorithm for this process is given in Algorithm 4, and the steps

are as follows: step 1 (lines 2–5) pre-assigns scope labels to node ids; step 2 (lines 6–12)

initializes the EPs with information from the nodes; and step 3 (lines 13–25) assigns EP

arguments and creates qeqs from information on the links. The algorithm uses two functions

that I will only describe here: ConnectedEqComponents(L) returns a list of node id

sets where each set is a connected component of a graph where the vertices are the nodeids

and the edges are links with a post value of EQ;8 and NewVar(t[,P ]) is a stateful function

that returns a new variable with type t and the next available variable id (an integer), and

optionally assigns the properties P to the variable.9

Step 1 builds a mapping H of node ids to labels (scope handles). In an MRS, multiple

EPs may share a label (called an EP conjunction), but at this point in the algorithm

there are no EPs, and the scope information is not present on the nodes. Therefore this

step discovers which subsets of nodes correspond to (eventual) EP conjunctions via the

ConnectedEqComponents() function, and instantiates a new label via NewVar() for

each subset and assigns all node ids in the subset to that label.

Step 2 instantiates the EPs from their corresponding nodes and places all information

available on the node onto the new EP. The predicate is assigned directly, and the label is

taken from the mapping H created in step 1. All EPs except for quantifiers get a unique

intrinsic variable. Quantifiers do not get intrinsic variables as they get a bound variable

instead, which is the intrinsic variable of the EP they quantify over. For this reason, quanti-

fiers’ bound variables are set in step 3, after all other EPs have gotten an intrinsic variable.

The intrinsic variables of non-quantifier EPs are created via the NewVar() function using

the variable type given in the node’s cvarsort property, and all other properties are as-

signed to the variable. Step 2 also sets the value of any constant arguments if present on the

corresponding nodes.

8For example, given links ⟨0, 1, ARG1, EQ⟩, ⟨2, 1, ARG1, EQ⟩, and ⟨3, 1, ARG1, NEQ⟩, the function would return
two sets: ({0, 1, 2}, {3}).
9It is stateful in that each call increments an internal counter; if calling NewVar(h) returns h1, then the

next call NewVar(x) returns x2, etc.
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Algorithm 4 Converting from DMRS to MRS
Input: N is a list of Nodes as ⟨id, pred, Prop, carg⟩ tuples
Input: L is a list of Links as ⟨from, to, role, post⟩ tuples
Output: R is a list of Elementary Predications as ⟨pred, label, var, Arg⟩ tuples
Output: HC is a list of Handle Constraints as ⟨lhs, rel, rhs⟩ tuples

1 function DmrsToMrs(N,L)
▷ Step 1: Pre-assign labels to node ids

2 for all conj ∈ ConnectedEqComponents(L) do
3 h ← NewVar("h")
4 for all id ∈ conj do
5 Hid ← h

▷ Step 2: Initialize EPs
6 for i← 1, |N | do
7 Rpred

i ← Npred
i

8 Rlabel
i ← Hid, where id = N id

i

9 if Ni is not quantifier then ▷ Set bound variable of quantifier later
10 Rvar

i ← NewVar(NProp
i ("cvarsort"), {⟨k, v⟩ ∈ NProp : k ̸= "cvarsort"})

11 if N carg
i is not nil then

12 RArg
i ("carg") ← N carg

i

▷ Step 3: Assign EP arguments and make qeqs
13 for all {l ∈ L : lrole ̸= "MOD"} do
14 i ← index of node where N id

i = lfrom

15 j ← index of node where N id
j = lto

16 if lpost ∈ {"NEQ", "EQ"} then
17 RArg

i (lrole) ← Rvar
j

18 else if lpost = "HEQ" then
19 RArg

i (lrole) ← Rlabel
j

20 else if lpost = "H" then
21 hole ← NewVar("h")
22 RArg

i (lrole) ← hole
23 append ⟨hole, "qeq", Rlabel

j ⟩ to HC
24 if lrole = "RSTR" then ▷ Now set bound variables of quantifiers
25 Rvar

i ← Rvar
j
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The last step, step 3, now assigns the role arguments on the EPs based on information

from the links. Label equalities have already been set in steps 1 and 2, so there is no need to

consider mod/eq links. Furthermore, all other links with post values of EQ are now treated

the same as those with NEQ as the label equality information is already accounted for. There

are therefore three ways of interpreting a link, based on the value of post. Those with the

values EQ or NEQ are regular arguments, so the EP’s argument value will be the intrinsic

variable of the EP corresponding to the to node. Those with a HEQ value select the label of

the EP corresponding to the to node. And those with a H value create a new hole variable

and a qeq such that the hole is the lhs of the qeq, and the rhs is the label of the EP

corresponding to the to node. In that third case, RSTR/H links are used for quantifiers, so I

take this opportunity to set the bound variable of the quantifier to the intrinsic variable of

the EP corresponding to the to node.

This process converts DMRSs to MRSs, but it is simplified for clarity here. In the actual

procedure implemented by PyDelphin, there are other node properties copied to EPs, such

as for surface alignments, as well as the creation of a top handle and its corresponding qeq

to the label of the top EP.

5.3 Semantic Tests

There are several properties of semantic structures that can influence how I can use or

work with the representation. In Section 5.3.1 I explain the notion of connectedness

in MRS and DMRS, since there is little I can do with a disconnected structure. When

comparing two subgraphs, such as the source and target representations in bilingual data,

the property of isomorphism, described in Section 5.3.2, is a useful indicator that the

representations contain the same internal structure. And when traversing semantic graphs,

link orientation, described in Section 5.3.3, is a property that helps me determine the

direction in which to traverse edges.
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5.3.1 Connectedness

MRS, DMRS, and many other semantic representations are graphs, and therefore can be

disconnected, where some subgraph of semantic information is not incorporated into the

greater structure. Fully connected representations are generally preferred, as they can be

inspected via graph traversals to understand the contribution of each subgraph to the overall

meaning of the representation. Also, some methods of serialization cannot accommodate

disconnected graphs, such as PENMAN (see Section 5.5). In this section, I describe methods

for determining if MRS and DMRS representations are connected or not.

An MRS can be considered connected if the EPs, taken as nodes, are connected. EP

connectedness is determined by the following criteria:

1. if EP Ri has a non-scopal argument selecting EP Rj, then Ri and Rj are connected

2. if EPs Rj. . .Rk share a label, all EPs Rj. . .Rk are connected to one another

3. if EP Ri has a scopal argument that selects the label of EPs Rj. . .Rk (either directly

or via qeq), then Ri is connected to each of Rj. . .Rk

It is not unreasonable to add an additional criterion that the EP graph is connected to

top, as some implementations (e.g., EDS) or algorithms may rely on this property, but in

this dissertation, as in PyDelphin, I do not require it for MRS connectedness. Criterion 2

is somewhat controversial, as some may not consider collocation in the scope tree to be as

strong a relationship as one being the argument of the other.

In DMRS, scope information has been made into explicit links where required, and the re-

sulting nodes and links make up simpler graphs than those made up of MRS EPs, arguments,

handle constraints, and variables. It is thus simpler to check for DMRS connectedness: just

see if there’s a spanning graph by traversing the links. Checking DMRS connectedness by

traversing links is equivalent to checking MRS connectedness by traversing arguments and

EP conjunctions, and a connected MRS is convertible to a connected DMRS.
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5.3.2 Isomorphism, Structural Isomorphism, and Bilingual Isomorphism

Sometimes two equivalent MRSs can differ in their linearized form, which makes the com-

parison of two MRSs by their serialized strings inaccurate. For instance, a variable (e.g., x5)

used in one MRS may have a different form from one (e.g., x8) used in another MRS, but

as long as the variable type and distribution of these variables is the same in both MRSs,

the meaning would be equivalent, assuming there are no other more significant differences.

For DMRS, which has no variables, the value of node identifiers is similarly useful for its

distributional qualities, but is otherwise meaningless. These differences can occur from using

a different processor, such as the LKB instead of ACE, or from parsing close paraphrases

where the word order is different but the meaning is the same. When form-only differences

such as these occur, an isomorphism test can determine if the meaning of two represen-

tations is the same. Isomorphism checks if the shape of two graphs are the same, where

meaningful content (defined below) is used to find corresponding nodes and edges.

For both MRS and DMRS, the values of predicates and constant argument values (as

node labels) and argument roles (as edge labels) are meaningful content. MRS additionally

includes handle constraint relations (namely, qeq), and DMRS includes post-slash labels on

links. Variable properties are also generally included, although for some applications it can be

useful to ignore them so sentences such as the dogs chase cats and the dog chased cats, which

only differ by number and tense properties, are evaluated as isomorphic. Variables or node

identifiers, surface alignments, or string differences in serialization (spacing, relative order of

EPs/nodes, etc) are irrelevant for meaning, and thus also when computing isomorphism.

PyDelphin computes isomorphism via the VF2 algorithm (Cordella et al., 2001) by con-

verting its internal MRS and DMRS representation into a NetworkX (Hagberg et al., 2008)

graph and using NetworkX’s isomorphism implementation.10 The graph conversion includes

only the relevant information as defined in the preceding paragraph.

For the work described by this dissertation, I use a relaxed form of isomorphism testing

10At least, for PyDelphin versions 0.3 through 0.6.2.
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for bilingual representations, which I call structural isomorphism.11 For this test, I ignore

predicate forms, as I am interested in checking for structural isomorphism only, and I ignore

variable properties. Since predicate forms and variable properties do not matter, I implement

this as a string comparison, which is faster to compute than the graph-based comparison, but

requires decisions in serialization to be deterministic. I start with the PENMAN-serialized

DMRS (see below in Section 5.5), which has a deterministic form for serialization, including

normalized node identifiers, and remove substrings related to predicates, constant arguments,

properties, and spacing, leaving only the bracketing, node identifiers, and argument roles.

For example, Fig. 5.4 shows a simple transformation of the PENMAN serialization of the

DMRS graph for dogs chase cats.

• Before: (e0 / _chase_v_1 :ARG1 (x1 / _dog_n_1) :ARG2 (x2 / _cat_n_1))

• After: (e0:ARG1(x1):ARG2(x2))

Figure 5.4: Before and after the string transformation for structural isomorphism checking

For two subgraphs in a bilingual pairing that have the same structural form as deter-

mined by this string transformation, I say that they are bilingually isomorphic, and this

property is evidence that the predicates at corresponding locations in the subgraphs are

likely to be translationally equivalent. In a strict sense, there are some problems with the

conclusions I draw from this test’s outcome. First, the two subgraphs are not guaranteed

to be translationally equivalent in whole or in part, but I make that assumption by trusting

the output of my bilingual subgraph aligners (see Chapter 6). Second, even if the subgraphs

are translationally equivalent, it is not necessarily the case that corresponding nodes in the

graph are also translationally equivalent. There could be argument switching (of the I likes

apples versus apples please me type), head switching (I like swimming versus I swim hap-

11Thanks to Emily Bender for the term isomorphish to describe a relationship as somewhat isomorphic,
but I will use structural isomorphism here as it emphasizes the comparison of graph structure.
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pily), or other kinds of translational divergences (Dorr (1994) gives a thorough overview of

such divergences, which I covered in Section 1.1) that still fit within my notion of bilingual

isomorphism. Nevertheless, I find the test to be generally useful in approximating struc-

tural correspondence, so I use it when converting subgraph pairs to MRS transfer rules in

Chapter 7.

5.3.3 Link Orientation and Inversion

DMRS is a representation of semantic dependencies and in dependency relations there are

heads and dependents.12 These correspond to functors and arguments, which in DMRS

links are encoded as from (for the head, selecting the functor) and to (for the dependent,

selecting the functor’s argument). The from→to sequence encodes a link’s direction in the

semantic graph. Using the link direction for a directed graph traversal would, however, lead

to multiply rooted structures and hence unreachable portions for nearly all DMRS graphs.

Consider the DMRS in Fig. 5.5 for the sentence the southbound train departed, which has

three roots: _the_q, _southbound_a_1, and _depart_v_1. A directed traversal starting at

the indicated top node (_depart_v_1) would only be able to reach _train_n_of.

_the_q _southbound_a_1 _train_n_of _depart_v_1

top

index

rstr/h

arg1/eq arg1/neq

Figure 5.5: Multiply-rooted DMRS for The southbound train departed.

By inverting the direction of traversal of certain links, the multiply-rooted graphs can

become singly-rooted. Discussion of traversal and the useful properties of singly-rooted

graphs is in Section 5.4.2; here I define the test I use for determining when to invert the

12These are properties of edges, not nodes, in the dependency graph, as a node can be a head for one
relation and a dependent of another.
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direction of link traversal. The functor-argument information in link direction should be

maintained, as it is important for the well-formedness of the semantic structures, so I dis-

tinguish link direction from the preferred direction of edge traversal with a new term: link

orientation. Links that are preferably traversed from→to (i.e., the same as the link direc-

tion) are to-oriented while those preferably traversed to→from are from-oriented. By

the preferred direction of traversal, I mean I designate links as to-oriented or from-oriented

by their attributes, not their usage—in other words, the orientation need not always be the

actual direction of traversal. Specifically, links from quantifiers to their quantifiees and from

non-scopal modifiers to their modifiees are generally those causing multiple roots and thus

designated from-oriented. The quantifier links (e.g., _the_q to _train_n_of) have a role of

rstr which is used in no other kind of link. These links invariably have a post of h, so I

will refer to them as rstr/h links. Non-scopal modifiers (e.g., _southbound_a_1) may be

the from node of more than one link (i.e., in MRS, they have more than one argument), but

only one is connected to the modifiee: the one with the post of eq (in MRS, they share a

label). These links occur with different role values, so I call them */eq links.

Algorithm 5 defines the test for link orientation—to-orientation, specifically—by return-

ing False if either the link’s role is rstr or its post is eq, otherwise returning True. Link

orientation is dichotomous, so a False value for to-orientation is equivalent to a True value

for from-orientation. I therefore only need one test to determine both orientations.

Algorithm 5 Determine if a DMRS link is to-oriented
Input: l is a Link as a ⟨from, to, role, post⟩ tuple
Output: True if l is to-oriented, otherwise False

1 function ToOrientedLink(l)
2 if lrole = "RSTR" or lpost = "EQ" then
3 return False
4 return True

The quantifier case is straightforward but non-scopal modifiers are more nuanced and

require further explanation. Note that for the DMRS figures below I highlight the from-
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oriented links that would be inverted in a traversal. Non-scopal modifiers are generally things

like intersective modifiers (e.g., white in white cat, as shown in Fig. 5.6a), but also subsective

(cognitive scientist), intensional (fake gun), and so on, where the modifier is connected to

the modifiee with an arg1/eq link. Some modifiers are composed of multiple nodes, such as

noun-noun compounds (e.g., oil derrick, shown in Fig. 5.6b), which introduce a node with the

abstract predicate compound and an arg1/eq link that connects compound to the node being

modified by the compounding (derrick). Another link connects compound to the node for

the modifying noun (oil), but its post is not eq. Thus, the subgraph composed of compound

and the modifying noun together act as a modifier of the other noun in the compound.

Another example is coordinated adjectives (e.g., expensive and frivolous vacation, shown

in Fig. 5.6c),13 where the coordinator node (with the _and_c predicate), rather than the

adjectival coordinands, has a */eq link connecting it to the modifiee, specifically a mod/eq

link.

The */eq links are not used for scopal modification, such as seemingly difficult (e.g.,

in the seemingly difficult problem was solved quickly; the relevant portion, seemingly difficult

problem, is shown in Fig. 5.7a, compared to the non-scopal modification of difficult problem

in Fig. 5.7b). Scopal modifiers link to their scopal-modifiees with a post value of h (in MRS,

they have an argument that is qeq to a label scoping over the modifiee). Note that the

subgraph composed of the scopal modifier and its modifiee together non-scopally modify the

noun (e.g., problem, in the example above) via a mod/eq link. The linguistic intuition here

is that the problem in seemingly difficult problem is not difficult (hence there is no non-scopal

modification between the nodes for difficult and problem), it is only seemingly difficult.

Link orientation is related to the notion of representative nodes in MRS to DMRS con-

version (see Section 5.1.2). In MRS, a representative EP will be take no other EPs in its

EP conjunction as arguments. In DMRS, all */eq links involving a representative node

will have the representative node as its to node, including the non-argument mod/eq links.

13Also see the DMRS for the large and gentle dog sleeps in Fig. 2.5e of Section 2.10.
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_white_a_1 _cat_n_1

top

indexarg1/eq

(a) white cat

_oil_n_1 compound _derrick_n_1

top

indexarg2/neq arg1/eq

(b) oil derrick

_expensive_a_1 _and_c _frivolous_a_1 _vacation_n_1

top

indexl-index/neq

l-hndl/heq

r-index/neq

r-hndl/heq

arg1/neq

arg1/neq

mod/eq

(c) expensive and frivolous vacation

Figure 5.6: DMRS subgraphs showing non-scopal modification

_seeming_a_1 _difficult_a_1 _problem_n_1

top

indexarg1/neq

arg1/h

mod/eq

(a) seemingly difficult problem

_difficult_a_1 _problem_n_1

top

indexarg1/eq

(b) difficult problem

Figure 5.7: DMRS subgraphs comparing (a) scopal and (b) non-scopal modification
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Thus, in a rooted traversal, the representative node will be the root and the from node of

all */eq links will be its descendants.

5.3.4 Summary

The three tests above—connectedness, isomorphism, and to-orientation—are useful for fil-

tering, comparing, and traversing semantic graphs. I use them for tasks including extracting

subgraphs in Section 5.6, bilingual node alignment in Section 7.3.2, rooted graph traversals

in Section 5.4.2, and PENMAN serialization in Section 5.5.

5.4 Semantic Graph Traversal

Here I describe methods of traversing semantic graphs. The first method (Section 5.4.1) is

an iteration over only the nodes of a DMRS, which is used later to prepare my data for use

in an n-gram aligner (see Section 6.1). The second method (Section 5.4.2) is a to-oriented

traversal of the full DMRS graph, which is used in PENMAN serialization (see Section 5.5).

5.4.1 Surface Order Node Iteration

Surface-order node iteration enumerates the nodes based on the order of their corresponding

tokens in the sentence. This link-independent method may traverse from node Ni to Nj

even if there are no links ⟨Ni, Nj, ∗, ∗⟩ or ⟨Nj, Ni, ∗, ∗⟩, and it will visit every node in the

graph. Processors such as ACE reliably output nodes in surface order by default, so for

my experiments I use the order as output from the processor. If, however, a semantic

representation is obtained such that the node order is not reliable, the following method can

be used to recover this order in most circumstances. Some grammars may contain bugs such

that some pieces of information required for this method (such as surface alignments) are

not emitted with the semantic representation, in which case the full recovery of the surface

order is impossible. For this reason, it is preferable to use the predicate ordering from a

processor like ACE, rather than always recomputing the order.
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I define this method as a sorting operation on nodes. Recall from Section 2.2.3 that

the *MRS representations often store a ⟨cfrom, cto⟩ (i.e., start and end) pair of pointers

to surface positions along with EPs/nodes and this is the primary information that can be

exploited for sorting the nodes. If all nodes corresponded to non-overlapping tokens, this

would simply be the ordering of the starting position (cfrom). However, there are some

situations where a predicate’s surface pointers overlap with one or both pointers from other

predicates, so I must make use of other kinds of information to break ties.

The first sorting criterion is the starting position of each node’s surface pointers (cfrom).

But consider a noun compound like machine translation. The nodes and surface pointers,

as analyzed by the ERG, are shown in Table 5.1.14 Note that implicit quantifiers (udef_q)

overlap exactly with the thing they quantify over, and the abstract compound node overlaps

with all other nodes in the compound.15

node cfrom cto

udef_q 0 19

compound 0 19

udef_q 0 7

_machine_n_1 0 7

_translation_n_1 8 19

Table 5.1: Nodes and surface pointers for machine translation

An improvement over just ordering by the starting position is to order first by cfrom,

then break ties by the inverse or negation of cto, which would put the outermost (i.e.,

widest-ranging) nodes first. But this still does not result in a deterministic ordering of

the implicit quantifiers, so therefore I add a third-level tie-breaker: node-is-a-quantifier (or

14The relative ordering of nodes in Table 5.1 and successive tables is as output from the ACE processor.
15The first udef_q quantifies over the compound so it takes the full span.
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not),16 which recovers the order in Table 5.1.

Consider now the ERG’s analysis of the negation suffix n’t, as in Kim isn’t a student,

which results in an abstract node neg, and not a surface node (e.g., some hypothetical

_n't_a_neg). In contrast, the analysis for the prefix un-, as in Kim unwound the string,

results in a surface node _un-_a_rvrs, rather than an abstract one (e.g., rvrs). The nodes

and pointers for isn’t and unwind are shown in Table 5.2.

node cfrom cto

_be_v_id 4 9

neg 4 9

_wind_v_1 4 11

_un-_a_rvrs 4 11

Table 5.2: Nodes and surface pointers for isn’t in Kim isn’t a student
and unwound in Kim unwound the string

While the n’t suffix and un- prefix have a relative order in the sentence, their surface

pointers in the semantic representation are shared with the words they modify. A fourth-

level criterion such as node-is-abstract would not place these in the desired position (neither

node is abstract for un-), and other solutions (e.g., alphabetic sort) seem arbitrary or brittle,

so it does not seem possible to have a principled criterion for fully surface-sorted nodes given

only the information in the semantic graph. Therefore I opt for consistency over principle

and add both criteria above (node-is-abstract and alphabetic sort) as fourth- and fifth-level

tie-breakers.

16This criterion may need to be adapted for different languages. In English and Japanese, overt quantifiers
precede the things they quantify over (e.g., the dog; orこの⽝ kono inu “this dog”, where the demonstrative
kono is the quantifier), so it is consistent to put the implicit quantifiers in the same relative position, but
in, e.g., Indonesian, quantifiers follow the quantifiees (e.g., anjing ini “this dog”, where the demonstrative
ini is the quantifier), so the consistent placement of implicit quantifiers is after the quantifiee.
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5.4.2 Rooted Traversal

In Section 5.3.3 I defined a test to determine if a link is to-oriented (i.e., the preferred

traversal of the link matches its from→to, or functor-argument, direction) or from-oriented

(the preferred traversal is to→from), which lets me invert the edges of quantifier and non-

scopal modifier links so that the multiply-rooted DMRS graphs become singly-rooted. In this

section I will describe that traversal. A similar exploration on MRS graphs has been called

argument crawling (Packard et al., 2014), but it did not use link-orientation. Lønning

and Oepen (2016) call a similar procedure for recovering scopal information in EDS spinal

traversal.

The traversal is defined recursively starting from the top node. Upon visiting a node Ni,

the procedure first collects all to-oriented links where Ni is the from node and calls itself on

their to nodes. Next it collects all from-oriented links representing non-scopal modification

where Ni is the to node and calls itself on their from nodes. Finally it finds all from-oriented

representing quantification and calls itself on their from nodes. The iteration order of the

to-oriented links is the order the roles appear in the DMRS, e.g., with arg1 appearing before

arg2, etc. For the non-scopal modifiers, it is possible that many edges share the same label

(e.g., arg1/eq′), so this subset is ordered instead by their surface alignments.17

Fig. 5.8 shows the DMRS for the sentence The angry farmer fanatically chased the rabbit.18

Note that there are more roots (_the_q, _angry_a_1, _fanatic_a_1, and _the_q) than non-

roots (_chase_v_1, _farmer_n_1, and _rabbit_n_1), and the indicated top of this graph

(_chase_v_1) is not even a root node. A traversal of the graph that inverts the from-oriented

edges results in the graph shown in Fig. 5.9. Inverted edges are marked with a prime symbol

(′), and numbers in parentheses indicate the order of traversal using a depth-first search.

It is not guaranteed that a traversal using such link inversions would reach every node.

Links that prevent graphs from being fully traversable occur when to-oriented links are

17As mentioned in Section 5.4.1, I use the surface order as output by ACE.
18This visualization is a variation of the graphical views of DMRS that emphasizes the edge directions.
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top _fanatic_a_1

_the_q _angry_a_1 _chase_v_1 _the_q

_farmer_n_1 _rabbit_n_1

arg1/eq

arg1/neq

arg2/neqrstr/h arg1/eq
rstr/h

Figure 5.8: Multiply-rooted DMRS for The angry farmer fanatically chased the rabbit

(1) _chase_v_1

(2) _farmer_n_1 (5) _rabbit_n_1 (7) _fanatic_a_1

(3) _angry_a_1 (4) _the_q (6) _the_q

arg1/neq

arg2/neq

arg1/eq′

arg1/eq′
rstr/h′ rstr/h′

Figure 5.9: Rooted DMRS traversal order with inverted links

directed toward the top, or root, rather than away from it, and likewise when from-oriented

links point away from the root, rather than toward it. For the development portion of

the Tanaka Corpus (Tanaka 2001; also see Section 8.1.1), 90.4% of the Japanese items

analyzed with Jacy had a result that could be fully traversed using only the preferred traversal

directions (79.3% over all results). For the English results, as analyzed by the ERG, it was

99.4% of the items (98.1% over all results). Preliminary analysis of the results that cannot be

fully traversed shows them to be ill-formed in some way, indicative of a bug in the grammar,

but a full analysis is beyond the scope of this dissertation. Such a use of semantic inspection is
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not without precedent, however. Fuchss et al. (2004) described MRS representations in terms

of dominance constraints and defined MRS-nets as MRSs that satisfy some graphical

properties similar to my requirements for a full traversal using preferred traversal directions,

and Flickinger et al. (2005a) showed that analyses that were not MRS-nets indicated bugs

in the grammar.

A DMRS graph or subgraph that can be fully traversed has some useful properties. The

traversal changes the multiply-rooted graph into a singly-rooted graph, but the graph is in

fact often an arborescence, or a directed, rooted tree. Algorithms designed for trees are

generally more efficient than those for less constrained types of graphs, which is appealing

for computational tasks involving millions of subgraphs, such as my transfer rule extrac-

tion. Furthermore, subgraphs of trees (i.e., subtrees) can be found by pruning just one edge.

Singly-rooted DMRS graphs are not always arborescences, though, as re-entrancy is a com-

mon feature in *MRS representations, e.g., in control examples like Kim tried to sleep (where

Kim is both trying and sleeping), but is also seen in the examples above, namely Figs. 5.2,

5.6c, and 5.7a. Subgraphs with rentrancies cannot be found by pruning a single edge when

the edge occurs between, in an undirected sense, the source and target of the re-entrancy,

but it is possible if the edge is outside the undirected cycle caused by the re-entrancy.19 The

rooted traversal also has a normalizing effect on source and target semantic representations.

Nodes at similar locations in the source and target graph typically have similar significance

or salience with respect to the overall meanings; i.e., nodes that are more distance from the

root are less important for representing the meaning of the sentence. I make use of this

fact by assuming that the root nodes of aligned subgraphs are translationally equivalent and

flag them as such so the transfer process can copy any untransferred material (e.g., mor-

phosemantic properties, which I do not cover) from the source root to the target root (see

Section 7.3.3).

19This fact could be exploited as a feature or a constraint of subgraph enumeration, but I do not explore
that possibility in this dissertation.
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5.4.3 Summary

I have defined two methods for traversing DMRS structures. The first, defined in Sec-

tion 5.4.1, iterates over nodes in the DMRS according to their surface order. I describe a

way to compute that ordering from graph properties in case it is necessary, but in practice I

use the output order from ACE. The second, defined in Section 5.4.2, uses the links’ orien-

tations to choose a preferred direction of traversal. This method is not guaranteed to reach

all nodes, but it does for nearly all well-formed DMRSs. These traversal methods are useful

for preparing data for bilingual alignment in Chapter 6.

5.5 PENMAN Serialization

Converting MRS to DMRS simplifies the semantic structure to aid in discovering useful

information. The DMRS graph, however, is still challenging to work with in some ways,

such as its being a multi-rooted DAG. Performing a task like graph comparison as a graph

operation can be prohibitively slow, but if equivalent graphs could be consistently serialized

to the same string, they could be compared with a much-faster string comparison operation.

Therefore I define a simple serialization of the graphs along with a traversal method that visits

the nodes in a well-defined order. For the serialization format, I chose to use the PENMAN

notation,20 which has in recent years been popularized by the AMR data (Banarescu et al.,

2013). PENMAN notation is designed for encoding something like semantic dependencies,

so it is a good fit with the requirements of DMRS. Furthermore, by adopting the existing

format, code written for AMR data can use DMRS data with little or no modification, which

lowers barriers for researchers outside of DELPH-IN wanting to make use of DELPH-IN data.

The first step of the conversion process is transforming DMRS nodes and links into

⟨source, relation, target⟩ triples, as shown in Algorithm 6. The source and target of the

triples are edge directions, not the from and to of DMRS links, but the functor-argument

information is not lost because the relation indicates if the direction has been inverted,

20Historically called Sentence Plan Notation (Kasper, 1989) in the PENMAN project (Penman, 1989)
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as described below. The top of the graph is important, as PENMAN is a singly-rooted

serialization, so the top of the DMRS is identified with a special triple. Next, all attributes

of nodes are added as individual triples with the node’s identifier as the source. Links are

added last; all to-oriented links are added as-is (as ⟨from, relation, to⟩ triples) while from-

oriented links are inverted so as to be in the preferred traversal direction (as ⟨to, relation-of,
source⟩ triples).21 An example of the output of this algorithm for the dog whose tail is long

barked is given in Fig. 5.10, with the node-derived triples on the left and the link-derived

triples on the right.

Algorithm 6 Converting DMRS nodes and links to triples
Input: top is the identifier of the top node in the DMRS
Input: N is a list of Nodes as ⟨id, pred, Prop, carg⟩ tuples
Input: L is a list of Links as ⟨from, to, role, post⟩ tuples
Output: T is a list of ⟨source, relation, target⟩ triples

1 function DmrsTriples(top,N, L)
2 append ⟨"top", "TOP", top⟩ to T ▷ Identify the top node of the graph
3 for all n ∈ N do
4 append ⟨nid, "predicate", npred⟩ to T
5 if ncarg is not nil then
6 append ⟨nid, "carg", ncarg⟩ to T

7 for all ⟨k, v⟩ ∈ nProp do
8 append ⟨nid, k, v⟩ to T

9 for all l ∈ L do
10 if ToOrientedLink(l) then
11 relation ← FormatString("%s-%s", lrole, lpost) ▷ E.g., ARG1-NEQ
12 append ⟨lfrom, relation, lto⟩ to T
13 else
14 relation ← FormatString("%s-%s-of", lrole, lpost) ▷ E.g., ARG1-EQ-of
15 append ⟨lto, relation, lfrom⟩ to T

Once I have the triples, I can serialize to PENMAN notation by starting at the identified

top node adding all triples with that node as the source, then recursively expanding triple

21The relations of link-derived triples combine the role and post values of the links. I use FormatString()
in Algorithm 6 to represent a string-formatting function with the semantics of C-style printf functions.
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(top, TOP, 10006) (10001, RSTR-H-of , 10000)
(10000, predicate , _the_q) (10001, ARG2-EQ-of , 10003)
(10001, predicate , _dog_n_1) (10001, MOD-EQ-of , 10005)
(10001, cvarsort , x) (10003, ARG1-NEQ , 10004)
(10002, predicate , def_explicit_q) (10004, RSTR-H-of , 10002)
(10003, predicate , poss) (10005, ARG1-NEQ , 10004)
(10003, cvarsort , e) (10006, ARG1-NEQ , 10001)
(10004, predicate , _tail_n_1)
(10004, cvarsort , x)
(10005, predicate , _long_a_1)
(10005, cvarsort , e)
(10006, predicate , _bark_v_1)
(10006, cvarsort , e)

Figure 5.10: DMRS triples for the dog whose tail is long barked

targets as new nodes. The details of the layout algorithm are mostly irrelevant here (I rely

on my Penman library22 for serialization), but it is important to note that it is deterministic.

It is not strictly necessary to invert the from-oriented links in Algorithm 6, but by doing so

I am informing the serialization function in the Penman library of the preferred direction for

those edges. The library will respect these preferences unless it is unable to reach portions

of the graph, in which case it opportunistically switches one edge direction and proceeds as

before.23 For each node, triples with the predicate relation (abbreviated as /) are always

traversed first, followed by those with carg and property relations, then uninverted triples

from the node (to-oriented), and finally the inverted triples from the node (from-oriented).

It is possible to sort the relative order of property- and link-derived triples, but I keep the

original order from the DMRS. The result of serializing the DMRS given above in Fig. 5.2

is shown in Fig. 5.11.24

For my work on bilingual semantic alignment, the default serialization in Fig. 5.11 is

22https://github.com/goodmami/penman
23Most DMRS graphs can be serialized fully with the original edge directions, but some instances require
inverted edges in order to get a spanning DAG.
24As in Fig. 5.2, I omit most node properties.

https://github.com/goodmami/penman
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(10006 / _bark_v_1
:cvarsort e
:ARG1-NEQ (10001 / _dog_n_1

:cvarsort x
:RSTR-H-of (10000 / _the_q)
:ARG2-EQ-of (10003 / poss

:cvarsort e
:ARG1-NEQ (10004 / _tail_n_1

:cvarsort x
:RSTR-H-of (10002 / def_explicit_q)))

:MOD-EQ-of (10005 / _long_a_1
:cvarsort e
:ARG1-NEQ 10004)))

Figure 5.11: PENMAN serialization for the dog whose tail is long barked

made even simpler by combining the cvarsort property with the node identifier.25 I also

renumber the identifiers via a depth-first traversal, which gives a deterministic identifier for

each node. The result is shown in Fig. 5.12.

(e0 / _bark_v_1
:ARG1-NEQ (x1 / _dog_n_1

:RSTR-H-of (u2 / _the_q)
:ARG2-EQ-of (e3 / poss

:ARG1-NEQ (x4 / _tail_n_1
:RSTR-H-of (u5 / def_explicit_q)))

:MOD-EQ-of (e6 / _long_a_1
:ARG1-NEQ x4)))

Figure 5.12: ID-normalized PENMAN serialization for the dog whose tail is long barked

PENMAN notation is a compact way of serializing DMRS graphs. The compactness saves

disk space when storing millions of subgraphs (e.g., during bilingual subgraph alignment in

Chapter 6) and the deterministic node relabeling and serialization allows subgraphs to be

compared via string comparisons. Graph comparison is generally expensive to compute, so

25Quantifiers, which have no cvarsort, are assigned the (underspecified) cvarsort value of u.
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the ability to do string comparisons instead allows my subgraph alignment methods to be

tractable.

5.6 Subgraph Extraction

For bilingual semantic alignment, the ability to extract subgraphs from the original semantic

graph is necessary functionality. I extract subgraphs in two ways: from a selection of nodes

or from a restricted graph traversal. The first method is used when the subgraph’s predicates

are known, while the second is used to explore the space of available subgraphs for a semantic

representation.

5.6.1 Subgraphs From a List of Predicates

A DMRS graph contains uniquely identifiable nodes (via their node identifiers) which are

characterized primarily by their predicates. A single DMRS instance may have multiple

nodes with the same predicate, so the use of predicate names to identify nodes is an inexact

specification. The method of subgraph extraction described in this section finds all subgraphs

connecting nodes selected by a predicate phrase, i.e., a list of predicates. For every unique

predicate occurring n times in the list of predicates P , the resulting subgraphs will each have

n nodes with that predicate. There may be more than one subgraph found in a DMRS for

each predicate list, but only connected subgraphs representing unique node selections will

be returned. The method is defined in Algorithm 7.

The first step is to find, for each predicate Pi, the set of nodes Mi using that predicate

(line 3). If there are repeated predicates in P then there will be repeated sets in M , but this

is by design, as I want one unique node for every predicate. The next step (line 4) takes the

Cartesian product of the list of node sets, finding all selections of nodes. For instance, if M

is ({a, b}, {c}, {a, b}), there will be four selections: (a, c, a), (a, c, b), (b, c, a), (b, c, b). There

is, however, only one of those selections that is useful. While a predicate may be repeated

in a subgraph (e.g., for violence begets violence, or the dog chased the cat), a node may not.

Also, node order is irrelevant in subgraph selection. Therefore, of the selections above, only
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one of (a, c, b) or (b, c, a) are useful. I filter out repeated elements and repeated selections in

line 5.

For each unique and complete node selection, there is exactly one subgraph as I include

every link from the original DMRS whose from and to nodes both exist within the selection.

Each subgraph must be tested for connectedness, as it is possible the node selection chooses

nodes that are not connected via the link selection. Consider again the dog chased the cat:

if P is (the, cat), the algorithm will make two node selections, one including the first the

(determiner of dog) and one including the second, but only the latter selection is a connected

subgraph. Therefore in line 8 I test if the node and link selections represent a connected

subgraph. If the subgraph is connected, I append it to the subgraph list S.

Algorithm 7 Extracting DMRS subgraphs from a predicate list
Input: N is a list of Nodes as ⟨id, pred, Prop, carg⟩ tuples
Input: L is a list of Links as ⟨from, to, role, post⟩ tuples
Input: P is a list of predicates
Output: S is a list of connected DMRS subgraphs as ⟨nodes, links⟩ tuples

1 function DmrsSubgraphsFromPredList(N,L, P )
2 for i←1, |P | do ▷ Find sets of matching nodes for each Pi

3 Mi ← {Nj : (1 ≤ j ≤ |N |) and (Npred
j = Pi)}

4 A ← M1 × · · · ×M|P | ▷ All node selections for each predicate P1, . . . , P|P |
5 U ← {N ′ ∈ A : no element N ′

i = N ′
j where i ̸= j} ▷ Only unique selections

6 for all N ′ ∈ U do ▷ Extract subgraphs for each valid N ′ and L′

7 L′ ← (l ∈ L : (lfrom ∈ N ′id) and (lto ∈ N ′id))
8 if Connected(N ′, L′) then
9 append ⟨N ′, L′⟩ to S

5.6.2 Enumerated Subgraphs From a Traversal

The second method, defined in Algorithm 8, performs a rooted traversal of the graph from

each node and records the depth of traversal at each node it reaches, then enumerates the

subgraphs starting from each node, including each descendant node up to some maximum
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depth. Unlike the method defined in Section 5.6.1, this algorithm does not require a list of

predicates; it only requires the input semantic representation and a maximum depth.

The top function of Algorithm 8, DmrsEnumerateSubgraphs(), goes through each

node in the input DMRS and, considering it the root of a class of subgraphs, finds all

descendant nodes26 and their depth, via rooted traversal, respective to the root. Subgraphs,

from single nodes (depth 0) up to subgraphs of depth d, are enumerated and added to the

list of subgraphs S. For re-entrant subgraphs, it is possible to enumerate the same subgraph

more than once, at different depths, so in line 8 I check if the subgraph has been seen before

adding it to S.

The second, recursive function DmrsNodeDepths() takes as parameters a current node

n, the DMRS data, the current depth of traversal cd, and a set of already-traversed nodes

seen. The base condition is that the current node has not yet been traversed, so it will

continue until it cycles or until it runs out of links to traverse.27 If the node has not yet been

traversed, it and the current depth cd are added to the output node set N ′. The algorithm

then calls itself, at the next depth level, using the to node of any to-oriented links and the

from node of any from-oriented links. All other links (where neither from nor to are the

current node’s id) are ignored.

The iteration over DMRS nodes as roots and the selection of nodes within a depth limit

are something like the Root() and Frontier() operations used in Data-Oriented Parsing

(e.g., Bod and Scha 2007) and Data-Oriented Translation (Way, 1999; Hearne and Way,

2003). In contrast, the method defined above works on graphs instead of trees. Furthermore,

my method does not enumerate every possible subgraph, but one subgraph for each root and

depth level (that is, it includes all nodes available within the depth limit, and not various

subsets of them).

26For re-entrant graphs, a descendant could also be an ancestor, and this is by design. I avoid cycles in
the traversal by stopping if I’ve encountered the same node twice.
27Dynamic programming and other optimizations, such as only traversing to the maximum depth, would
improve the computational complexity, but I present it as it is here for simplicity.
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Algorithm 8 Extracting DMRS subgraphs from a restricted graph traversal
Input: N is a list of Nodes as ⟨id, pred, Prop, carg⟩ tuples
Input: L is a list of Links as ⟨from, to, role, post⟩ tuples
Input: md is the maximum depth of traversal
Output: S is a list of connected DMRS subgraphs as ⟨Nodes, Links⟩ tuples

1 function DmrsEnumerateSubgraphs(N,L,md)
2 for all n ∈ N do
3 D ← DmrsNodeDepths(n,N, L, 0, {})
4 for d←0,md do
5 N ′ ← {n′ : (⟨n′, d′⟩ ∈ D) and (d′ ≤ d)}
6 if |N ′| > 0 then ▷ No empty subgraphs
7 L′ ← (l ∈ L : (lfrom ∈ N ′id) and (lto ∈ N ′id))
8 if ⟨N ′, L′⟩ /∈ S then
9 append ⟨N ′, L′⟩ to S

Input: n is the root Node as a ⟨id, pred, Prop, carg⟩ tuple
Input: N is a list of Nodes as ⟨id, pred, Prop, carg⟩ tuples
Input: L is a list of Links as ⟨from, to, role, post⟩ tuples
Input: cd is the current depth of traversal
Input: Seen is a set of traversed Nodes
Output: N ′ is a set of (n′, d) pairs where n′ is a Node and d is the Node’s depth from n

10 function DmrsNodeDepths(n,N, L, cd, seen)
11 N ′ ← {}
12 if n /∈ Seen then
13 add n to Seen
14 add (n, cd) to N ′

15 for l ∈ L do
16 if lfrom = nid and ToOrientedLink(l) then
17 tgt ← Ni, where N id

i = lto

18 N ′ ← N ′ ∪DmrsNodeDepths(tgt, N, L, cd + 1, Seen)
19 else if lto = nid and ¬ToOrientedLink(l) then
20 tgt ← Ni, where N id

i = lfrom

21 N ′ ← N ′ ∪DmrsNodeDepths(tgt, N, L, cd+ 1, seen)
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5.6.3 Summary

The two subgraph extraction algorithms defined in Section 5.6.1 and Section 5.6.2 present

different views of the data. One extracts subgraphs matching an external specification for

included nodes, while the other enumerates subgraphs at various roots and sizes. These two

methods are used in Chapter 6 to find bilingual subgraph alignments, the first method for

when I have aligned semantic predicates, and the second for building a statistical model over

the subgraphs.

5.7 DMRS Simplification

Even with the simpler DMRS graphs, there are still some kinds of information that are noise

for bilingual aligners. This noise can be elements that are uninformative and increase data

sparsity or, for n-gram aligners, tokens that intervene and prevent a useful n-gram from

being found. Some of these substructures are entirely predictable, so it is possible to simply

remove them from the graph. Some can be reduced to a form that simplifies the graph but

doesn’t lose information. And some represent information that is not necessarily useful, and

can be dropped even if it cannot be recovered.

Fig. 5.13 shows the DMRS, as analyzed by the ERG and converted to DMRS by PyDel-

phin, for the phrase Pierre Vinken, 61 years old. It only has five words, but requires ten

predicates, as each individual (the nodes for Pierre, Vinken, and years) requires a quantifier,

the name requires a compound node to join them, and a measure node allows 61 years to

modify old. In this section, I will propose some transformations that reduce the graph to

just five nodes, one for each word. Such transformations are not a new idea, as they have

been done for DM (Ivanova et al., 2012; Oepen et al., 2014, 2015), and for DMRS (Yin

et al., 2014; Copestake et al., 2016). I, however, am selective about which transformations

to apply, sacrificing some complexity for a representation that is less lossy than those prior.
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proper_q compound proper_q named
:carg "Pierre"

named
:carg "Vinken"

…

rstr/h

rstr/h

arg1/eq

arg2/neq

… measure udef_q card
:carg "61"

_year_n_1 _old_a_1

rstr/h

arg1/eq

arg2/neq

arg1/eq

arg1/eq

Figure 5.13: DMRS graph for Pierre Vinken, 61 years old

5.7.1 Removing Nodes

Some nodes in the DMRS graph can be removed and easily recovered. The nodes may be

entirely predictable based on the presence of other nodes, or they may have been converted

to links (see Section 5.7.3). Additionally, there are some kinds of irrecoverable nodes whose

removal does not significantly change the meaning, such as the passivization marker parg_d

in the ERG or the topic marker _wa_d in Jacy. In this section I will focus on the removal of

one kind of generally recoverable node: default quantifiers.

All nodes that are individuals are in the restriction of some quantifier. These can be

informative, as with _the_q, _any_q, or _neither_q in the ERG, but they can also be

simply the default or obligatory quantifier for a category of nodes. Examples of the latter are

udef_q, the default quantifier for common nouns, and pronoun_q, the obligatory quantifier

for pronouns in the ERG. Table 5.3 shows the default quantifiers for four kinds of nodes in

the ERG and Jacy.

Generally these quantifiers can be removed without a loss of information, as re-adding
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Category ERG Jacy

Common nouns udef_q udef_q

Pronouns pronoun_q def_q

Named entities proper_q def_q

Number names number_q –

Table 5.3: Default and obligatory quantifiers in the ERG and Jacy

them would be trivial given the predicate of the quantifiee. One exception is number_q in

the ERG, which is used when talking about a number (e.g., Two is the only even prime

number, or Kim is in room 504), but not when the number is used, e.g., for counting things

or for times (The two cats tumbled off the window sill., I left work at 5:04pm). Therefore,

recovering the proper use of number_q would require more sophisticated graph analysis than

just looking at the predicate of the quantifiee. Figs. 5.14a and 5.14b show the simplification

of Pierre by removing its default quantifier.

proper_q named
:carg "Pierre"

rstr/h

(a) Original

named
:carg "Pierre"

(b) Simplified

Figure 5.14: Removing implicit quantifiers

5.7.2 Combining Node Attributes

Predicates representing proper names, such as for person or organization names, days of

the week, numbers, etc., use a generic predicate for their category, then the constant value
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is associated via the node attribute carg.28 By embedding the constant value into the

predicate name directly, the graph can be made simpler, as shown in Figs. 5.15a and 5.15b.

A similar technique can be used for other node properties, such as the morphosemantic

properties.

named
:carg "Pierre"

(a) Original

named("Pierre")

(b) Simplified

Figure 5.15: Simplifying predications with constant values

5.7.3 Converting Binary Predications to Links

There is a class of predications in MRS that take two arguments, where the one linked by

the arg1 role shares its label, and the other one is linked by the arg2 role. In DMRS

terms, this class contains nodes that are the source of two links: one arg1/eq and the other

arg2/neq. Examples of this class in the ERG include compounding, many prepositions

(e.g., for at, from, etc.), and possessives, among other constructs. This class can be losslessly

converted into (binary) links, as shown in Figs. 5.16a and 5.16b. This conversion might

be best used selectively, as there may be some instances that are best left as full nodes,

depending on the application (e.g., fond in students fond of physics enrolled in the course).

I do not, however, convert binary predications to links in my experiments, as I consider

the conversion, as defined, incomplete. There are also binary predications exhibiting the

opposite pattern, where, in DMRS, a node is the source of arg1/neq and arg2/eq links.

Instead, I leave such transformations for future work, but I include the description here for

completeness. Ivanova et al. (2012); Oepen et al. (2014, 2015) convert binary predications

28I call carg a pseudo-argument as it is encoded in MRS with a role, but unlike other arguments it does
not describe the EP’s relation to some other EP. In DMRS it is just a node property, so in the visualization
I represent this by including it in the node box.
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when they are abstract (e.g., for compound, but not for _at_p or _fond_a_of), because

otherwise the information would be lost in a bilexical representation. Yin et al. (2014) found

that similar simplifications decreased data sparsity in a parse-ranking model and improved

results.

compound named("Pierre") named("Vinken")

arg1/eq

arg2/neq

(a) Original

named("Pierre") named("Vinken")

compound/eq

(b) Simplified

Figure 5.16: Converting binary predications to links

5.7.4 Summary

Using the transformations defined above, I can simplify the original example to the DMRS-

like structure in Fig. 5.17. In my experiments, I make use of the first two transformations:

removing nodes (including default quantifiers) and combining node attributes. I do not use

the final transformation (converting binary predications to a links) at this time, but I leave it

to future work. Copestake et al. (2016) describe further transformations, such as normalizing

composed number names and proper names (e.g., such that Pierre Vinken is a single named

node), but I do not attempt these transformations as they are more lossy than what I have

described above, and would thus be harder to recover for generation.

named("Pierre") named("Vinken") card("61") _year_n_1 _old_a_1

compound/eq arg1/eq measure/eq

arg1/eq

Figure 5.17: Final simplified DMRS graph
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5.8 Chapter Summary

In this chapter I have described several semantic operations for transforming, testing, and ex-

ploring DMRS graphs. In Section 5.1 I defined functions for converting MRS structures into

DMRS, and in Section 5.2 I define the inverse procedure—converting DMRS back to MRS.

In Section 5.3 I define three semantic tests: connectedness (Section 5.3.1), isomorphism (Sec-

tion 5.3.2), and link orientation (Section 5.3.3). These tests are useful for detecting if DMRS

structures are useful for bilingual alignment, and for serialization. In Section 5.4 I describe

two methods of DMRS traversal. First, a surface-order node iteration (Section 5.4.1), then a

traversal of the graph (Section 5.4.2) which uses the link orientation test from Section 5.3.3.

I describe how I serialize DMRS into the compact PENMAN notation in Section 5.5. In

Section 5.6 I cover two methods of extracting subgraphs. The first (Section 5.6.1) relies on

a list of predicates to extract connected subgraphs with those predicates, and the second

(Section 5.6.2) enumerates subgraphs of various traversal depths taking each node in the

graph as a separate root. Finally, in Section 5.7 I show several simplification procedures of

DMRS that are mostly lossless, including the removal of default quantifiers (Section 5.7.1),

combined node attributes with the predicate (Section 5.7.2), and converting binary pred-

ications to links (Section 5.7.3). These operations are used heavily in bilingual subgraph

alignment (Chapter 6), transfer rule creation (Chapter 7), and data exploration (Chapter 8).
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Chapter 6

BILINGUAL SEMANTIC SUBGRAPH ALIGNMENT

The semantic operations defined in Chapter 5 enable me to describe processes of bilingual

semantic subgraph alignment. I describe these processes assuming a bilingual MRS (bisem)

corpus (see Sections 8.5 and 9.3). The goal is to identify source and target subgraph pairs

⟨gs, gt⟩ where each subgraph is connected and gs and gt are bilingually correlated (i.e.,

likely to be translationally equivalent). I hypothesize that non-trivial subgraph pairs, i.e.,

those leading to transfer rules of multiple EPs (see Chapter 7), have benefits for translation.

Some words are lexically ambiguous, such as ⼿ te “hand/arm/technique/etc.”, and having

some context can help in selecting the proper translation, thus improving translation ade-

quacy and fluency. Subgraphs also allow for non-compositional translations, such as idioms,

where it’s not easy to get a proper translation by transferring smaller portions separately.

I define two methods for finding alignments, each approaching the problem from a differ-

ent angle. The first, described in Section 6.1, simplifies the semantic representation so it is

feasible to use existing n-gram based word-aligners to find bilingually correlated semantic in-

formation. These correlations are then projected onto the original representations to recover

the structural information. The second, described in Section 6.2, enumerates the possible

subgraph pairings, with structure intact, of a ⟨gs, gt⟩ pair, then calculates statistics over the

corpus to assign a score of bilingual correlation, which can then be used for filtering. Both

of these kinds of subgraph pairs are used in Chapter 7 for the construction of MRS transfer

rules. In Section 6.3 I discuss ways of filtering the extracted subgraph pairs in order to get

rid of pairs unlikely to be useful. I compare my approach to related work in Section 6.4.



97

6.1 Bilingually Aligned Predicate Phrases

This method of subgraph alignment works by the proxy of aligning linearizations of graph

nodes. Standard alignment techniques in machine translation work on n-grams of sentence

tokens. These techniques do not readily apply to non-linear structures like DMRSs, which

are directed acyclic graphs (DAGs), but if I can transform the DAGs into simple path graphs,

then I can make use of the n-gram techniques.

This system uses Anymalign (Lardilleux et al., 2012), a bilingual word aligner, in order

to find predicate phrase pairs from linearized predicate-only representations of the se-

mantic graphs. Other word aligners, such as Giza++ (Och and Ney, 2003), may be used

as long as they produce n-gram phrase alignments and not just word alignments.1 These

predicate phrase pairs have scores attached to them that indicate their bilingual correlation

in the corpus. For those pairs whose score meets a threshold, I project the predicates onto

matching semantic graphs (that is, I mark the nodes matching the predicates) in order to

extract the graph structure that connects the predicates. The score from the aligner is then

assigned to the extracted subgraph pair.

6.1.1 Surface-order Predicate Linearization

The input to Anymalign is a simplified linearization of the predicates in the semantic graphs.

This linearization is produced using three operations from Chapter 5: surface-order node

iteration (Section 5.4.1), node removal (Section 5.7.1), and combining node attributes (Sec-

tion 5.7.2). As a running example in this section, consider the sentence fragment in (11)2 and

its original and simplified DMRS graphs in Fig. 6.1 for the Jacy-analyzed Japanese sentence3

and Fig. 6.2 for the ERG-analyzed English sentence.

1My method expects the output format of Anymalign, so a converter or codec for other output formats
would be required to make use of other word aligners.
2From the Japanese WordNet corpus; see Section 8.1.3.
3The given Jacy analysis is the first result from parsing, and中部 chuubu “center” is analyzed as a name.

Jacy also has a non-name predicate for the word, which is used in the second result (not shown), but
otherwise the compounding construction is the same.
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(11) エチオピア
Echiopia
Ethiopia

中部
chuubu
center

に
ni
loc

位置
ichi
location

する
suru
do

“located in central Ethiopia” [jpn]

def_q udef_q named
:carg " エチオピア"

named
:carg " 中部"

compound _ni_p _ichi_s_1

rstr/h

rstr/h

arg2/neq

arg1/eq

arg2/neq

arg1/eq

(a) Original

named(" エチオピア") named(" 中部") _ni_p _ichi_s_1

arg2/neq arg1/eq

(b) Simplified

Figure 6.1: Original and simplified DMRS graphs for エチオピア中部に位置する

The first step is to iterate over the nodes.4 The iteration order partially determines the

final linearized form, but I do not linearize (i.e., join the predicate strings with spaces) yet

as the following steps apply transformations that may utilize non-predicate node attributes.

In the next step, I remove specific nodes based on their predicates.5 The n-gram aligner

works best when tokens (predicates, in my case) that go together in a multi-gram alignment

are adjacent within the string. Abstract predicates, particularly those that do not correspond

to a content word in the sentence, can therefore interfere with the aligners ability to extract

relevant predicate phrases. Some predicates I remove, such as quantifiers, I do not necessarily

4In the order as output from ACE, as discussed in Section 5.4.1.
5The actual predicates I remove are listed in Section 9.6.1.
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_locate_v_1 parg_d _in_p proper_q _central_a_1 named
:carg "Ethiopia"

arg3/h

arg1/eq

arg2/neq

rstr/h

arg1/eq

(a) Original

_locate_v_1 _in_p _central_a_1 named("Ethiopia")

arg3/h

arg2/neq

arg1/eq

(b) Simplified

Figure 6.2: Original and simplified DMRS graphs for located in central Ethiopia

want appearing in the resulting transfer rules, as I expect there should be rules in the hand-

built grammar6 for these closed-class predicates, or I can recover them as a post-processing

step. Other predicates, such as for compounding or nominalization, I remove in order to help

the aligner, but I allow them to be re-added during subgraph extraction (see Sections 6.1.2

and 9.6.1). This step may result in a disconnected graph, but for surface-order predicate

linearization this is not a problem. In Fig. 6.1b, the nodes with predicates def_q, udef_q,

and compound have been removed, while in Fig. 6.2b those with predicates parg_d and

proper_q have been removed.

The next step is to combine node attributes. Constant argument values and morphose-

mantic properties, both attributes of nodes, are lost if I only linearize the predicate. Therefore

I combine the constant argument value and properties with the predicate token. For exam-

ple, if I encounter a named node with a carg property of Kim, the predicate token becomes

named("Kim"). I similarly append some morphosemantic properties on pronouns (if they

6See Section 4.4.
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are kept; in my experiments I remove them), since otherwise they all become normalized to

the pron predicate in both the ERG and Jacy. For example, she in English becomes the

token pron(3.SG.F). While it’s possible to do this for morphosemantic properties for most

predicates, doing so would increase the data sparsity and be detrimental to the aligner’s

ability to find generalizable translations. In Fig. 6.1b the nodes with carg values of エチ
オピア Echiopia “Ethiopia” and 中部 chuubu “center” have both been combined with their

predicate to form named("エチオピア") and named("中部"), respectively, and in Fig. 6.2b

the node with the carg of Ethiopia has similarly been modified.

In the final step, I take the remaining nodes, extract the (possibly modified) predicate

symbols, and join them with spaces to create the linearized predicate string. The predicates

do not encode morphological variation, so this is similar to a lemmatized sentence. The

result for Fig. 6.1b is named("エチオピア") named("中部") _ni_p _ichi_s_1, while for

Fig. 6.2b it is _locate_v_1 _in_p _central_a_1 named("Ethiopia"). By doing this to

both sides of the bisem corpus, I create a new kind of bitext (a bipred corpus, perhaps, by

analogy of bitext and bisem) that will work with n-gram aligners like Anymalign.

6.1.2 Subgraph Extraction

I run Anymalign over the linearized predicate corpus to produce a set of predicate phrase

alignments A, where each alignment a ∈ A is a tuple ⟨S, T,W, P, freq⟩ such that S is a list of

source predicates, T is a list of target predicates, W is a pair of lexical weights ⟨ws, wt⟩,7 P is

a pair of translation probabilities ⟨pf , pb⟩, and freq is the frequency of the alignment. Once

alignment is complete, I go over the bisem corpus again with the alignments in order to find

aligned subgraph pairs. Recall from Section 5.6.1 that a single predicate phrase can match

more than one subgraph for a DMRS instance, and this is true for both the source and target

sides. Therefore, for every alignment, subgraph pairs are extracted if, for both the source

and target predicate lists, there exists at least one connected subgraph in the correspond-

7W comes from Anymalign, but note that it is not used in Algorithm 9.
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ing DMRS. The projection of predicates onto the DMRS and the extraction of connected

subgraphs is accomplished by an extension of the DmrsSubgraphsFromPredList() func-

tion, defined in Section 5.6.1, called DmrsSubgraphsFromPredSpec(). This extended

function takes an additional argument O, which is a set of optional predicates. Any optional

predicate o ∈ O is included in an extracted subgraph if all arguments of o are in the set of

subgraph nodes N ′. Algorithm 9 uses DmrsSubgraphsFromPredSpec() to define the

extraction of subgraphs X from a corpus C using alignments A and optional predicates O

(defined as a pair ⟨source, target⟩, as this is a bilingual function).

Algorithm 9 Extracting DMRS subgraphs using predicate alignments
Input: C is a bisem DMRS corpus as ⟨ds, dt⟩ tuples of DMRSs
Input: A is a set of predicate phrase alignments as ⟨S, T,W, P, freq⟩ tuples
Input: O is a pair of source/target optional predicate sets ⟨source, target⟩
Output: X is a list of aligned subgraphs as ⟨d′s, d′t, P, freq, count⟩ tuples

1 function ExtractSubgraphsFromAlignments(C,A,O)
2 for all ⟨ds, dt⟩ ∈ C do
3 for all ⟨S, T,W, P, freq⟩ ∈ A do
4 for all d′s ∈ DmrsSubgraphsFromPredSpec(ds, S, Osource) do
5 for all d′t ∈ DmrsSubgraphsFromPredSpec(dt, T, Otarget) do
6 append ⟨d′s, d′t, P, freq⟩ to Y

7 for all unique elements ⟨d′s, d′t, P, freq⟩ ∈ Y do ▷ Get extraction count
8 count ← number of times ⟨d′s, d′t, P, freq⟩ appears in Y
9 append ⟨d′s, d′t, P, freq, count⟩ to X

For the example in Figs. 6.1 and 6.2, Anymalign finds the alignment in Fig. 6.3. The

procedure given in Algorithm 9 would only find one subgraph pair, shown in Fig. 6.4, from

the DMRS pair in Figs. 6.1 and 6.2, as each predicate only has one matching node.

As discussed below in Section 6.4, the H&B rule templates not only match semantic

material that can be transferred, but also encode structural constraints in the transfer rules

and filter out bad or unlikely subgraphs, but the initial projection and subgraph extraction

of my method only accomplishes the first of these: matching transferable semantic material.

The semantic material at this stage is at the level of the subgraph, so all the mapping says
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⟨(named(" エチオピア"), named(" 中部")),
(_central_a_1, named("Ethiopia")),
⟨0.767, 0.128⟩, ⟨0.226, 0.986⟩, 211⟩

Figure 6.3: Example alignment for エチオピア中部 → central Ethiopia

(x0 / named
:carg "chuubu_3"
:ARG1-EQ-of (e1 / compound

:ARG2-NEQ (x2 / named
:carg "echiopia_1")))

(x0 / named
:carg "Ethiopia"

:ARG1-EQ-of (e1 / _central_a_1))

Figure 6.4: Example subgraph pair extracted using the alignment in Fig. 6.3

is that the source subgraph can transfer to the target subgraph, but not, in the case of

MWE pairings, which internal source nodes map to which internal target nodes. Therefore

I need to subsequently perform filtering of the extracted subgraphs (Section 6.3) and apply

structural constraints for both monolingual argument structure (Section 7.3.1) and bilingual

mapping (Section 7.3.2).

6.2 Top-Down Subgraph Enumeration

This second method of subgraph alignment is a first step toward a method that is more

native to nonlinear graphs. Rather than, as in Section 6.1, building a statistical model of

bilingually correlated predicates and then extracting the structure for them, here I build a

statistical model over the subgraphs directly. There are many ways this could be done: I

could count occurrences over random subsets of subgraphs, akin to Anymalign for n-grams;

optimize iteratively via expectation-maximization, as is done in Giza++ or synchronous tree

grammars (Eisner, 2003; Ding and Palmer, 2005); or count enumerated subgraphs and build

a one-shot statistical model over them to identify correlations. I choose to use the last of

these methods, as it is easier to implement, although the others are fertile ground for future
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work.

In Section 6.2.1 I explain how I enumerate and pair the source and target subgraphs.

I describe the prefiltering of subgraph pairs in Section 6.2.2 as a preparatory step toward

building a statistical model, which is done in Section 6.2.3. The weighted-ϕ2 metric for

filtering pairs using information from the statistical model is described in Section 6.2.4.

6.2.1 Enumerating and Pairing Subgraphs

I call this method top-down subgraph enumeration because I begin at the top of the graph,

which for my data is always identified. The procedure for enumerating the subgraphs of

a DMRS is an extension of the DmrsEnumerateSubgraphs() function, defined in Al-

gorithm 8, called DmrsEnumerateSubgraphSpec(). The extended function takes an

user-defined set of predicates, drop, such that any nodes in the traversal that have pred-

icates in drop are excluded. As this may remove nodes in the middle of a traversal, any

subgraphs that are disconnected will be excluded.

The subgraphs enumerated for Fig. 6.1a are shown in Fig. 6.5, and those for Fig. 6.2a

are shown in Fig. 6.6. These subgraphs were created using different parameters than for

the example in Section 6.1. In particular, nodes for the compound and nominalization

predicates are kept. Note that the subgraph of the largest depth (four in Fig. 6.5 and three

in Fig. 6.5) shows the full graph after simplification using the task-specifc parameters; those

at all other depths are subgraphs of the largest one. Also note that I have rearranged the

nodes from the original order. Since these subgraphs are created using a rooted traversal, I

place the root (or top) at the left; all left-to-right links are regular to-oriented links, while

right-to-left links are from-oriented.

Subgraph enumeration is a monolingual step, so the next step is to pair all subgraphs for

a source DMRS to those of its target DMRS. Algorithm 10 defines how DmrsEnumerate-

SubgraphSpec() is applied to both the source and target DMRSs to produce subgraphs

which are paired, then counted, to create the intial model. Only subgraph pairs whose top

nodes’ types are the same will be paired. The counts will be used in the next steps to build
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_ichi_s_1

top

_ni_p

top

named(" 中部")

top

compound

top

named(" エチオピア")

top

(a) Depth = 0

_ichi_s_1 _ni_p

top arg1/eq

_ni_p named(" 中部")

top arg2/neq

named(" 中部") compound

top arg1/eq

compound named(" エチオピア")

top arg2/neq

(b) Depth = 1

_ichi_s_1 _ni_p named(" 中部")

top arg2/neqarg1/eq

_ni_p named(" 中部") compound

top arg1/eqarg2/neq

named(" 中部") compound named(" エチオピア")

top arg2/neqarg1/eq

(c) Depth = 2

_ichi_s_1 _ni_p named(" 中部") compound

top arg1/eqarg2/neqarg1/eq

_ni_p named(" 中部") compound named(" エチオピア")

top arg2/neqarg1/eqarg2/neq

(d) Depth = 3

_ichi_s_1 _ni_p named(" 中部") compound named(" エチオピア")

top arg1/eq arg2/neq arg1/eq arg2/neq

(e) Depth = 4

Figure 6.5: Example Japanese subgraphs enumerated for Fig. 6.1a
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_locate_v_1

top

_in_p

top

named("Ethiopia")

top

_central_a_1

top

(a) Depth = 0

_locate_v_1 _in_p

top arg3/h

_in_p named("Ethiopia")

top arg2/neq

named("Ethiopia") _central_a_1

top arg1/eq

(b) Depth = 1

_locate_v_1 _in_p named("Ethiopia")

top arg3/h arg2/neq

_in_p named("Ethiopia") _central_a_1

top arg2/neq arg1/eq

(c) Depth = 2

_locate_v_1 _in_p named("Ethiopia") _central_a_1

top arg3/h arg2/neq arg1/eq

(d) Depth = 3

Figure 6.6: Example English subgraphs enumerated for Fig. 6.2a
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the statistical model.

Algorithm 10 Pairing DMRS subgraphs
Input: C is a bisem DMRS corpus as ⟨ds, dt⟩ tuples of DMRSs
Input: md is the maximum depth of traversal
Input: drop is a pair of source/target node sets to drop ⟨source, target⟩
Output: X is a mapping of subgraph pairs to counts Xs,t = count

1 function EnumeratePairs(C,md, drop)
2 for all ⟨ds, dt⟩ ∈ C do
3 for all d′s ∈ DmrsEnumerateSubgraphSpec(d′s,md, dropsource) do
4 for all d′t ∈ DmrsEnumerateSubgraphSpec(d′t,md, droptarget) do
5 if VarSort(GraphTop(d′s)) = VarSort(GraphTop(d′t)) then
6 append ⟨d′s, d′t⟩ to Y

7 for all unique pairs ⟨s, t⟩ ∈ Y do
8 count ← number of times ⟨d′s, d′t⟩ appears in Y
9 Xs,t ← count

6.2.2 Subgraph Prefilters

Before calculating statistics beyond simple counts, I perform prefiltering on the set of sub-

graph pairs that have been extracted. The model at this stage contains pairings of all

enumerated subgraphs for each source and target DMRS pair, along with their occurrence

counts. Noise in the model can drown out the signal, so I attempt to remove bad subgraphs

before computing statistics. While I did some simple filtering in the enumeration step by ex-

cluding subgraphs beyond a depth limit and by excluding nodes in the drop sets, at this stage

I filter out those that match a structural pattern. An example source and target pattern are

given in Fig. 6.7, taken from the full list given in Table 9.9 of Section 9.7.1.

(e0 / unknown_v
(a) Source

(e* / _of_p)
(b) Target

Figure 6.7: Example prefilters
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The source prefilter (Fig. 6.7a) specifies the node identifier as e0 and its predicate as

unknown_v, which will only match the top node of a subgraph if it has a matching predicate.

The prefilter subgraph is “open” as there is no closing parenthesis, which allows it to match

whether or not the node has any children. The purpose of this prefilter is to remove pairs

where the source side’s top node is an unknown eventuality, which occurs, for instance, when

parsing just a noun phrase. The arguments of this unknown node in the original DMRS will,

unless otherwise filtered, be enumerated separately, and thus can still be potentially used in

transfer rules.

The target prefilter (Fig. 6.7b) specifies the node’s type, but not its full identifier, so it

will match whether or not it is the top node of a subgraph. It further specifies a predicate of

_of_p, which in the ERG is used for of prepositional-phrases as in the desert of Antarctica,

and the node is closed with a closing parenthesis, meaning that there are no incoming or

outgoing arguments. The depth-based subgraph enumeration produces many subgraphs that

capture only one or no arguments of nodes with binary arity, such as _of_p, _and_c, etc.

Such subgraphs could be useful in translation (there could be many things that are x of

Antarctica, e.g., settlements, penguins, etc., or for the other argument, desert of x), but this

filter would exclude pairs where the target includes neither argument.

Prefilters are a graph-matching approach to removing pairs where one side exhibits an

undesired pattern. If the prefilters are selected well, this step will remove noise from the

model and make it easier for the next step to identify correlations.

6.2.3 Building a Statistical Model of Subgraph Pairs

In this step I calculate some statistics that can be used to filter uncorrelated subgraph pairs.

Given that I have source and target subgraphs and a count, one of the easiest statistics to

calculate are probabilities, such as the joint probability, forward and backward translation

probabilities, and marginal probabilities for the source or target subgraphs. If X is the set

of subgraph pairs and counts and Xs,t is the count of a pairing of a source subgraph s and
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target subgraph t,8 then Table 6.1 defines some basic statistics using X.

Count of all observed subgraph pairs N =
∑

s,tXs,t

Count of all observed source subgraphs Xs =
∑

tXs,t

Count of all observed target subgraphs Xt =
∑

sXs,t

Joint probability P (s, t) = Xs,t

N

Marginal source probability P (s) = Xs

N

Marginal source probability P (t) = Xt

N

Forward translation probability P (t|s) = P (s,t)
P (s)

= Xs,t

Xs

Backward translation probability P (s|t) = P (s,t)
P (t)

= Xs,t

Xt

Symmetric translation probability P (t|s) ∗ P (s|t)

Table 6.1: Basic statistics of enumerated subgraphs

Using just the forward translation probability for filtering is not very effective because it

cannot easily distinguish correlation due to translational equivalence from other kinds of col-

location. That is, for a translationally equivalent pair such as s = (e0 / _mitsukaru_v_1)

and t = (e0 / _find_v_1), P (t|s) will be high because t occurs in may of the pairs where

s does, but that is also true for a bad pairing, such as s′ = (e0 / neg_x) with the same

t, simply because neg_x occurs frequently and thus pairs with many subgraphs. The same

is true for the backward probability, but in the other direction. The backward translation

probability could be used to distinguish the s and s′ as P (s|t) > P (s′|t), but it would suffer

the same problem when the target t is generally frequent. The symmetric translation prob-

ability multiplies the forward and backward translation probabilities together, so a pair will

only have a high symmetric translation probability if both the forward and backward prob-

abilities are reasonably high. The symmetric translation probability is similar to pointwise

mutual information, as shown in Eq. (6.1), and since ∀s,tXsXt ≥ X2
s,t ≥ Xs,t, the difference

8Where Xs,t = 0 for any s and t where ⟨s, t⟩ /∈ X.
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between the symmetric translation probability and pointwise mutual information is just one

of scale.

PMI(s, t) = Xs,t

XsXt

≈
X2

s,t

XsXt

= P (t|s)P (s|t) (6.1)

6.2.4 The Weighted ϕ2 Filter

The translation probabilities defined in the previous section are all derived from (or are

exactly) the conditional probabilities, which use the marginal probability in the denomina-

tor. The marginal probabilities, or similarly the count of source or target subgraphs, group

together all occurrences of where the source or target appear, regardless if the other side

(target or source) is included. In a contingency table, as shown in Table 6.2, the marginal

probabilities or counts include the ⟨source,¬target⟩ or ⟨¬source, target⟩ pairs along with

the ⟨source, target⟩ pairs. A more sophisticated metric would consider each cell separately.

target ¬target total

source a = Xs,t b = {Xs,y : y ̸= t} Xs

¬source c = {Xx,t : x ̸= s} d = {Xx,y : x ̸= s and y ̸= t} N −Xs

total Xt N −Xt N

Table 6.2: Bilingual contingency table

In feature selection for machine learning, the χ2 method is often used for discovering

which features have observed correlation different from the expected correlation, which is

an indicator of the usefulness of the feature in a classifier. The translational equivalence of

subgraphs is also a kind of correlation, so Church and Gale (1991) proposed using a variant

based on the ϕ coefficient, defined in Eq. (6.2), for the discovery of translation pairs in
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machine translation, as it is normalized by the corpus size and thus scales between 0 and 1.

ϕ =

√
χ2

N
(6.2)

The definition of ϕ2 in terms of the cells of the contingency table is given in Eq. (6.3).

When more pairs appear in cells a and d (⟨s, t⟩ and ⟨¬s,¬t⟩ pairs) than in cells b and c

(⟨s,¬t⟩ and ⟨¬s, t⟩ pairs), then s and t are correlated. When refactored and using my X-

based counts, Eq. (6.3) is equivalent to Eq. (6.4). Fig. 6.8 shows the value of ϕ2 for a = 1,

a = 5, and a = 25—that is, when s and t are paired once, five times, or twenty-five times—for

various values of the off-diagonal cells b and c with N constant at 10,000. Note that if there

is only one observed pair ⟨s, t⟩, then introducing any tuple¬s, t or ⟨s,¬t⟩ quickly drives down

the ϕ2 value. If the pair is observed twenty-five times, however, the correlation is robust to

additional pairs involving s or t.

ϕ2 =
(ad− bc)2

(a+ b)(a+ c)(b+ d)(c+ d)
(6.3)

=
(Xs,tN −XsXt)

2

XsXt(N −Xs)(N −Xt)
(6.4)

The ϕ2 metric only considers the co-occurrence of subgraphs and not properties of the

subgraphs, like graph order (number of nodes, or predicates, in the graph). This means that

it will equally weight s and t whether they have an order ratio of 1:1 or 1:6. If the source

and target subgraphs both contain predicates that occur only once in the corpus (e.g., a rare

but translationally equivalent pair) then all enumerated pairings involving that predicate

will get the same ϕ2 value and, based on my ordering of transfer rules (see Section 7.2.2),

the transfer grammar would always prefer the pairing with the largest source subgraph. I

do not think this will always be the most accurate pair for translation, so I conjecture that,

absent other information, translationally equivalent subgraphs should generally be the same

order. I therefore weight the ϕ2 value by the inverse of 1 plus the absolute difference in graph
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Figure 6.8: Example ϕ2 values for various numbers of pairs (a), unpaired sources (b), and
unpaired targets (c), in a sample size (N) of 10,000

orders, as defined in Eq. (6.5).9

Ws,t =
1

||V (s)| − |V (t)||+ 1
(6.5)

For each pair x ∈ X I calculate the forward and backward translation probabilities and

the weighted ϕ2 value. In the secondary filtering stage I exclude pairs that have a weighted

ϕ2 value below the threshold defined in Section 9.7.1. The translation probabilities are used

in the final filtering stage, which is described in the next section.

6.3 Filtering Subgraphs and Subgraph Pairs

The two methods of discovering translationally equivalent subgraph pairs defined in Sec-

tions 6.1 and 6.2 both involve their own specific kinds of filters, but once the initial set of

pairs (the transfer pair store) has been generated, there are additional filters that can be used

to further reduce the set. Both methods assign a forward translation probability, a backward

translation probability, and a count. As discussed in Section 6.2.3, neither the forward nor

9Note that the | character has two uses: in |V (s)| and |V (t)| it returns the order of the graphs s and t,
then in ||V (s)| − |V (t)|| it returns the absolute value of the difference of the orders.
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backward translation probability are very useful for identifying translationally equivalent

pairs, but the symmetric translation probability, which does a better job at identification,

can be trivially calculated from these two probabilities.

I use the symmetric translation probability with thresholds defined in Sections 9.6.1

and 9.7.1 for filtering subgraph pairs. The threshold is not absolute. I treat the probability

as a rank and select the top n pairs from each group of pairs with matching source subgraphs.

Monolingual grammars are often more robust in parsing than generation, and this ro-

bustness leads to many unknown nodes in the DMRSs. While it is possible to parse and

transfer source-side unknowns, target-side unknowns are more problematic. As ACE is un-

able to realize sentences with unknown predicates, I filter out any pairs containing target-side

unknowns.

6.4 Related Work

Jellinghaus (2007) automatically acquired MRS transfer rules for German (using the German

grammar GG (Müller and Kasper, 2000; Crysmann, 2005)) and English (using the ERG

(Flickinger, 2000)) using a top-down argument crawling method. The algorithm starts at

the top of both the GG-produced and ERG-produced MRS instances and first creates chains

of elementary predications by following explicit scopal edges, such as when two EPs share

a label or when one is qeq to the other. The chains generally do not create a spanning

path of the MRS, so Jellinghaus then, as much as possible, links together the disconnected

chains after their initial creation. Next, the algorithm traverses scopal arguments, followed

by non-scopal arguments, requiring that the values of the arguments are of the same variable

type (e.g., h, x, e), and prefering arguments with the same role name. When there are

alternatives in this traversal that are indistinguishable in the semantic graph, such as when

two or more adjectives modify the same noun, the algorithm can make use of word alignments,

as from Giza++, in order to resolve ties. These word alignments can also be used to help

find EP alignments that are unreachable by argument crawling, or to provide validation for

alignments that were found. Jellinghaus 2007, however, provides few details about how the
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word alignment information is used in implementation, nor does he provide any evaluation

that used these word alignments, so I cannot compare this part to my system. The argument

crawling is similar, in some ways, to my top-down subgraph enumeration. The algorithm

makes the assumption that the source and target semantic structures will be very similar;

i.e., that their top predications are similar in meaning and that the predications have the

same arity and same kinds of arguments. When this is not the case, the algorithm may fail

to acquire transfer rules, or may possibly produce a rule that mixes up the arguments (such

as with argument-switching divergences like X likes Y versus Y pleases X). This algorithm

also emits transfer rules as it inspects each MRS pair and all rules are then collated so

duplicates are removed and more specific (i.e., larger) rules appear before more general rules

in the transfer grammar, but no statistics are collected for the purpose of weighting the

rules. In contrast, my top-down subgraph enumeration does not treat scopal arguments as

particularly special compared to non-scopal arguments. My method also does not a priori

make the assumption that the source and target graphs will be structurally similar, although

an isomorphism constraint may be enforced during filtering. Finally, I use rule weights for

ordering transfer rules.

Haugereid and Bond (2011, 2012) described two methods for using n-gram aligners to

align semantic subgraphs. In the first method, they aligned a tokenized and lemmatized

bitext, then matched the lemmas to semantic predicates by looking up the lemmas in the

lexicon. In the second method, they parsed the source and target sentence, linearized the

predicate symbols, and aligned the linearization as though it were a bitext. In both methods,

the result of alignment was a phrase table of aligned semantic-predicate n-grams. When

both sides of an alignment matched one of the 22 transfer rule templates they defined, they

generated a new transfer rule using the stored structure (i.e., semantic graph edges) from the

template and the predicate content (i.e., the graph nodes) from the alignment. Weights from

the phrase table are used to filter out unlikely transfer rules. The templates perform three

roles: (1) in combination with the predicate alignments, find semantic material that can be

transferred; (2) encode the transfer-rule constraints that link up the predicates monolingually
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and map them bilingually; and (3) act as a filter for bad subgraphs (e.g., when the predicates

match a disconnected subgraph). After extracting a large store of transfer rules, Haugereid

and Bond later select rules that are applicable for a processing task by analyzing the MRSs

to be transferred and filtering out rules that contain predicates that don’t exist in the MRSs.

The selection process can be easily repeated for subsequent translation tasks. My bilingually

aligned predicate phrase method is similar to the second method of Haugereid and Bond

(2011, 2012), but instead of matching the predicates to a template, I match them against

the original semantic graph to extract a subgraph. I then create a transfer rule using the

observed structure rather than using the structure encoded in a template. My method is thus

more flexible and can match more kinds of structures, but it will also find more inappropriate

pairings. I also adapt the rule-selection process for my pipeline.

Translation using deep syntax and semantics in LFG was described by Way (1999) as a

variant of Data-Oriented Parsing (LFG-DOP) called Data-Oriented Translation (Hearne and

Way, 2003). In LFG-DOT, syntax tree pairs from a bilingual corpus are decomposed into

smaller tree fragments, which are then paired as a source of translation material. During

translation, tree fragments are pulled from the fragment base and composed into larger

structures. LFG-DOT’s paired subtrees have much in common with my enumerated subgraph

pairs. Being syntax trees, the fragments include non-terminal nodes which are used as the

starting points of composition. In contrast, my subgraphs are semantic dependencies and do

not have such non-terminal nodes. Machine translation using LFG’s f-structures (Graham

et al., 2009; Graham, 2011) is more similar to my method, as the deep syntax of f-structures

is in some ways more similar to semantic structures than constituency trees.

In this dissertation I build on both the linearize-align-extract method of Haugereid and

Bond 2011, 2012 and the traverse-enumerate-pair methods of Jellinghaus (2007), Hearne and

Way (2003), Graham et al. (2009), and Graham (2011). I extend these methods by putting

more focus on the graphical properties of the semantic representations and by exploring

different filtering methods.



115

6.5 Chapter Summary

Using the semantic operations defined in Chapter 5, I have defined two methods for creating

data stores of subgraph pairs for transfer. The first method, defined in Section 6.1, first finds

translational equivalencies among n-grams of semantic predicates, then projects these onto

matching semantic graphs to extract structural information. The second method, defined in

Section 6.2, enumerates and pairs source and target subgraphs for each pair of DMRSs in

the bisem corpus, then calculates stastics to build a model over the pairs. The two methods

have their own specific kinds of filters to reduce unwanted pairings, then there are filters,

described in Section 6.3, that apply to the outputs of both methods. Both methods extract

pairs from the DMRS representations which, unlike syntax trees, are mostly lexical nodes—

the hand-built core grammar has more general rules that target semantic constructions. I

compare my methods to other related work in Section 6.4. The transfer pair stores created

in this chapter contain DMRS subgraphs. In Chapter 7 I explain how I go from subgraph

pairs to MRS transfer rules.
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Chapter 7

TRANSFER GRAMMAR AUGMENTATION

The LOGON transfer machinery (Lønning et al., 2004) is a framework of tools and rep-

resentations that is separate but related to that of parsing and generation. The aligned

semantic subgraphs obtained by the method described in Chapter 6 are not in the form

required by the LOGON transfer machinery, so in the next step I transform them into the

type of rule the transfer machinery expects, called MRS transfer rules (MTRs). A transfer

grammar, such as JaEn (Bond et al., 2011), the object of my research, is a system combining

hand-written MTR types and some MTR instances, as well as a large set of automatically

created MTR instances, built for the purpose of semantic transfer. As it is infeasible to

manually create a large set of MTR instances, automatically extracting or generating MTRs

is the standard way of giving the grammar reasonable coverage, first pioneered by Jelling-

haus (2007) for rule extraction from source and target MRSs and by Nichols et al. (2007)

for creating rules from bilingual dictionaries. This process of expanding the coverage of a

transfer grammar is what I call transfer grammar augmentation—the subject of this

chapter.

The MTRs produced by Haugereid and Bond (2011, 2012) are generated by inserting

predicates into templates of hand-crafted MTR structures. In contrast, I extract MTRs

from the actual semantic structure; any edges in the graph were observed in an MRS. One

benefit of Haugereid and Bond’s method is that it is easier to make use of the MTR types

defined by the grammar, which can reduce redundancies among similar rules and generally

simplify the form of the resulting rules. A downside to the template approach is that the

templates can become out of sync with the source or target grammars. This can happen

when the source or target grammars change in such a way that the MRSs they produce or
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can generate from no longer match the input/output of the MTR templates. The templates

can even become out of sync with the transfer grammar, e.g., by using an MTR type that

has changed or has been removed. My method does not suffer from these downsides as it

makes minimal assumptions about the core (hand-built) transfer grammar.

In Section 7.1 I give a quick walkthrough of the LOGON transfer machinery and the

structure of MTRs. From a transfer pair store (created as described in Chapter 6), I first plan

out which pairs will be used in an experimental grammar and how the resulting grammar will

be structured (Section 7.2). I then describe the process of converting subgraphs to MTRs in

Section 7.3, including the conversion of nodes and edges to feature structure representations,

and the coindexation of variables to show subgraph-internal mappings. As the source and

target grammars are likely to change over time, a transfer grammar should not be considered

a static resource, so in Section 7.4 I describe issues related to the long-term maintenance of

a transfer grammar.

7.1 The LOGON Transfer Machinery

The LOGON transfer paradigm (Lønning et al., 2004) builds on the previous Verbmobil

conception of transfer as a resource-sensitive rewrite process of semantics (Wahlster, 2000),

adding “(i) the use of typing for hierarchical organization of transfer rules and (ii) a chart-

like treatment of transfer-level ambiguity.” (Lønning et al., 2004, p. 3) Rule applications are

successive and order-dependent; the input and output of most rules will not be the source

or target representation, but some intermediate representation. My method for augmenting

transfer grammars takes account of the chart-like processing of rules, in terms of rule ordering

and optionality, but only minimally uses the transfer rule type hierarchy.

7.1.1 Anatomy of an MRS Transfer Rule

An MRS transfer rule has an identifier, a type, and four feature components: context,

input, filter, and output (Oepen, 2008). An identifier must be unique within a trans-

fer grammar. The type is defined elsewhere in the transfer grammar and it may enforce
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constraints that will be inherited by an MTR instance. The four feature components are

optional and, if specified, describe a partial MRS. Most MTRs will have input and output

specified. There is a fifth, relatively underdocumented component flags,1 which is used to

signal the transfer engine to alter its default behavior when processing a rule. The optional

rule type monotonic_omtr sets the feature flags.optional (see Fig. 7.3), but otherwise I

don’t directly use the flags component in my rules.2 The TDL (Krieger and Schäfer, 1994;

Copestake, 2002) definition of an MTR is given in Fig. 7.1, and some examples are given

later in Figs. 7.6 to 7.8.

mrs_transfer_rule := top &
[ FILTER mrs,

CONTEXT mrs,
INPUT mrs,
OUTPUT mrs,
FLAGS flags ].

Figure 7.1: TDL definition of mrs_transfer_rule in JaEn

An MTR will be applied if context or input match the input MRS and filter, if

specified, does not match. Both context and input can be used to create bindings which

are used to copy or constrain information between components, but only input will consume

the matched partial MRS (i.e., remove it from the MRS after matching). Any partial MRS

descriptions on output are inserted into the output MRS, with the bindings from context

or input determining how it fits into the rest of the structure.

I only make use of two rule types: monotonic_mtr and monotonic_omtr. These types are

shown in Fig. 7.2, as implemented in JaEn, which only binds the ltop and index features

1A short description is available at http://moin.delph-in.net/LogonTransfer.
2Other features include flags.equal and flags.subsume, which selects a method for comparing sub-

structure, and flags.block, which signals the transfer engine to ignore the current hypothesis. These
features are used in some constructs in the core JaEn grammar, but are not directly utilized by my rules.

http://moin.delph-in.net/LogonTransfer
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across the context, input, and output components. The rules that I produce only use

the input and output components, as the selection of constraints for the context and

filter components is a much more difficult problem, one my methods are not designed for.

The monotonic_omtr type is for optional rules, which are discussed in Section 7.1.2.

monotonic_mtr := mrs_transfer_rule &
[ CONTEXT [ LTOP #h, INDEX #i ],

INPUT [ LTOP #h, INDEX #i ],
OUTPUT [ LTOP #h, INDEX #i ] ].

monotonic_omtr := monotonic_mtr & optional_mtr.

Figure 7.2: TDL definition of monotonic_mtr and monotonic_omtr in JaEn

7.1.2 Rule Optionality

When an MTR is applied, the elements on the input component are consumed, and are thus

no longer available to subsequent rules, but if it is not applied, it is skipped and the input

MRS is passed on to the next rule. Inapplicable MTRs, i.e., those where context or input

do not match the input MRS, or where filter does, will always be skipped. Applicable

MTRs that are non-optional will always be applied. Applicable MTRs that are optional,

i.e., those that have the flags.optional feature set, as shown in Fig. 7.3, will be both

applied and skipped as separate hypotheses.

optional_mtr := mrs_transfer_rule &
[ FLAGS.OPTIONAL + ].

Figure 7.3: TDL definition of optional_mtr in JaEn

These forked hypotheses expand the search space and can, in theory, increase the like-



120

lihood of getting an acceptable target MRS, since the transfer process can attempt more

paths. The expanded search space, however, increases the time and memory requirements

of transfer, so it may lead to more timeouts or hitting the memory limit more often. Thus,

the strategy for making rules optional should be sensitive to these limits.

My strategy is to group the rules by their input and make all but the final rule optional.

This ensures that all rules that are applicable for some partial input will be attempted. It does

not, however, prevent larger rules from blocking smaller ones, nor does it prevent partially

overlapping rules of the same size from being blocked. For instance, if the last (that is, non-

optional) rule matching predicates A and B applies, then any rules matching just A or just B

will be blocked, and so will rules matching, e.g., B and C, as B would have been consumed.

I find the first situation, where larger rules block smaller ones, acceptable, if not ideal,

because the expectation is that the larger rules transfer more idiomatic semantic fragments

than multiple smaller rules, and are thus preferred. The second situation, rules blocking

partially overlapping rules of the same size, is less acceptable, but here the expectation is

that the tie-breaking criteria for rule ordering (see Section 7.2.2) will put statistically more

likely rules before less likely ones of the same size.3

7.1.3 Summary

The LOGON transfer machinery is a powerful system for a resource-sensitive rewrite process

to enable cross-lingual semantic transfer. I do not use all features of the system, but the

ability to specify partial MRSs on the input and output with bilingual variable bindings

and a strategy for expanding the search space via optional rules is enough to accommodate

transfer from my extracted subgraph pairs.

3Meaning that within a set of rules of the same size, rules with the same input will not necessarily be
grouped together.
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7.2 Challenges and Strategies in Building Transfer Grammars

Having a large number of extracted MTRs would seem to make for a more expressive and

capable transfer grammar, but there are limits and tradeoffs to consider. Very large transfer

models can cause the grammar to be too large to compile with ACE.4 As of ACE 0.9.26,

the size limit of a compiled grammar is 2 GiB, which is space for approximately 120,000

extracted MTRs.5 Also, as discussed in Section 7.1.2, larger models do not always lead to

higher coverage or better results. The increased search space can cause the transfer process

to hit time or memory limits more often, thus reducing coverage, and the inclusion of lower

quality results can push the higher-quality ones past the result threshold.

Furthermore, timeouts in transfer do not only reduce coverage,6 but they also make the

experimental process take longer, which limits the capability to design and run numerous

experiments. Assuming a timeout of 10 seconds and up to 5 parses to-be-transferred per input

item, I estimate transfer of the Tanaka Corpus development set (4,500 items) would take
4,500∗5∗10

3,600
= 62.5 hours in the worst case where every input hits the timeout, but if only ∼10%

hit the timeout and the rest take on average 100 ms, it would take (450∗5∗10)+(4,050∗5∗0.1)
3,600

= 6.8

hours.7 The actual time is somewhat less than this, as the source grammar does not have

full coverage, and the average number of parses per (succesfully parsed) item is closer to four

than five. Nevertheless, the ratio of items hitting the timeout to those that do not can have

a large effect on the processing time.

4http://sweaglesw.org/linguistics/ace/
5120,000 is an estimate based on the largest model I created, but the number will vary with the complexity

of the extracted MTRs.
6This is practically but not strictly true. When ACE hits the timeout, it will output any hypothesis

MRSs, whether they are fully or only partially transferred. When a timeout is reached, ACE spent its
full time limit searching for transfers and never exhausted its search space, so it may in fact output many
more MRSs than a search that does not hit the timeout. I do not count MRSs with untransferred material
in the coverage, so a search that does not complete may only output MRSs that cannot be used.
7Processing can be parallelized, which speeds things up considerably. In my experiments, I parallelized

about 20 jobs at once, but I also have around 20 configurations to process (see Sections 9.6.3 and 9.7.3),
so for this time estimate the benefit is canceled out. Therefore, I ignore parallelization and multiple
configurations in my estimate.

http://sweaglesw.org/linguistics/ace/
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The two symptoms of large transfer models that I’ve identified—uncompilable grammars

and inefficient grammars—require different solutions. For the first, I pre-select subgraph pairs

relevant to the current task, while for the second I impose a rule ordering and selectively

make MTRs optional in order to avoid placing excessive burden on the transfer engine.

7.2.1 Keeping Grammars Compilable with Task-specific MTR Selection

For the first symptom, uncompilability, I follow the tactic introduced by Haugereid and Bond

(2012) where only the transfer pairs8 relevant for a particular transfer task are used to build

the model, and this pre-selection process is repeated for each task. MTR relevance is approx-

imated by checking if the source predicates all exist in a semantic input, without considering

the structure around those predicates. ACE also selects relevant MTRs prior to rule applica-

tion, and the time required for this discovery process is subject to the timeout, meaning that

pre-selection can also help the second symptom: transfer efficiency. ACE, however, is very

quick to select MTRs from a compiled grammar, and the time is insignificant compared to

the chart-based search of MTR applications. Pre-selection is therefore important mainly for

maintaining the compilability of the transfer grammar, as the full transfer pair store could

contain millions of subgraph pairs.

Taking this process to the limit—minimizing transfer grammar size by selecting relevant

pairs for every input—would cause a significant increase in the time required to process each

item. The time to select relevant pairs and compile a grammar is similar to that of the

transfer timeout, so any gains made by having the smaller grammar would be dominated

by the overhead of producing the grammar. Therefore I compromise, balancing transfer

coverage and processing time, by building a transfer grammar customized for each test suite

of 500 items. For some of my experimental systems, particularly with SGA (see Section 9.7),

there were so many available pairs that even per-task pre-selection was not sufficient for

keeping the grammar lean enough to be compilable, so I had to perform more aggressive

8Haugereid and Bond (2012) select the actual MTRs, but my selection process happens at the pre-MTR
(i.e., subgraph pair) stage.
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filtering at an earlier stage. Most configurations, however, were well under the 2 GiB limit

for compilation.

7.2.2 Improving Transfer Efficiency with MTR Ordering and Optionality

For the second symptom, inefficiency, there are two treatments I apply. I first choose the

order of MTRs within the transfer grammar. MTRs whose source MRS has more predicates

(i.e., subgraphs of higher order) are placed before those with fewer, following the practices

of Jellinghaus (2007) and Bond et al. (2011) who placed rules with more than one source

predicate before those with one source predicate. For ties, I further sort by symmetric

translation score (see Section 6.3), then the frequency, then the count.9 This ordering makes

MTRs that consume larger portions of the input more prominent, which has two intended

effects: it prioritizes transfers that consider more source material at a time, potentially

leading to more idiomatic translations; and it more quickly exhausts the input, which means

transfer spends less time searching for rules to apply. The second treatment is the selective

use of rule optionality as explained in Section 7.1.2, where each group of MTRs sharing

the same input are all made optional except for the last MTR in each group. In some

preliminary runs, I attempted to make all of my extracted MTRs optional, which resulted

in approximately 50% of the items hitting the timeout. With the rule-optionality strategy

defined above, only about 5% hit the timeout.

7.2.3 Summary

My experiments, described in Chapter 9, extract a multitude of bilingual subgraph pairs,

and without a careful strategy for selecting pairs and assembling them into a full transfer

grammar, the grammar could be uncompilable or it could be inefficient. By pre-selecting rules

that are relevant for the given set of inputs, I keep the grammar size small enough to compile.

9In the experimental system LPA (Section 9.6), the frequency is the number of times Anymalign
(Lardilleux et al., 2012) found an alignment. Frequency is not relevant for SGA (Section 9.7). The
count is the number of times my systems extract a transfer pair.
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By ordering the rules by the number of predicates in the source subgraph, then setting all

but the final MTRs for the same input as optional, I optimize the ability of the grammar to

make use of its available rules without excessively increasing its computational requirements.

Lastly, even though ACE does not employ statistical models for transfer ranking, the ordering

of transfer rules creates a crude transfer model because rule application is ordered.

7.3 Converting Subgraphs to Transfer Rules

The semantic representation used in most stages of my transfer grammar augmentation pro-

cess (extraction, filtering, and selection) is PENMAN-serialized DMRS subgraphs, but for

compiling a transfer grammar these subgraph pairs must be converted to MTRs. The con-

version process consists of three stages: monolingual structure conversion, bilingual variable

binding, and MTR instance creation. The second stage, bilingual variable binding, is the

most difficult and error prone, while the other stages are largely straightforward.

7.3.1 Monolingual Structure Conversion

In the first stage I must convert the source and target subgraphs to feature structures en-

coding the equivalent MRSs, retaining any argument structural and scopal relationships

through monolingual variable binding. This conversion and variable binding is accomplished

via DMRS-to-MRS conversion (see Section 5.2), using the first character of the PENMAN

node identifier as the node’s cvarsort (e.g., for x1 it would be x). This conversion ensures

that *-EQ edges (e.g., ARG1-EQ, MOD-EQ) in the subgraph result in label equalities in the

MRS, that *-H edges (e.g., ARG2-H, RSTR-H) result in qeqs, and that regular arguments (e.g.,

ARG1-NEQ, ARG1-EQ) select the appropriate intrinsic variable of some other EP. The resulting

MRS structures are not yet written to an MTR, but held in memory until after the variables

have been mapped bilingually.
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7.3.2 Bilingual Variable Binding

For the second stage I bind variables bilingually. While the monolingual binding encodes the

relationship between EPs in a single MRS (i.e., a single side of the MTR), the bilingual bind-

ing identifies correspondences between the source and target MRSs. Without the bilingual

binding, semantic material can still be transferred but it will be inaccessible to subsequent

MTR applications, thus reducing the utility of the rule.

I bind the variables by building a bijection of source–target node identifiers where I have

reasonable confidence of their correspondence. If the subgraphs are structurally isomorphic

(see Section 5.3.2 for an explanation of structural isomorphism), I assume that each source

node corresponds to the node in the respective position in the target subgraph. During the

DMRS-to-MRS conversion of the subgraphs, I coindex (i.e., bind) the scope label, intrin-

sic variable, and any hole variables (for handle constraints) of the source and target EPs

corresponding to nodes mapped in the bijection.

Fig. 7.4 shows an example subgraph pair for 恐ろしい夢を⾒る osoroshii yume-wo miru

“have a terrible dream”. The strings for structure comparison (shown in the top-right of the

figure) are identical so the subgraphs are isomorphic, thus allowing a full bijection of node

identifiers. The resulting MTR is shown at the bottom of Fig. 7.4 (MTR instance creation

is explained in Section 7.3.3), and every source variable is coindexed with the corresponding

target variable.

For non-isomorphic subgraphs, I assume they still have similar structure and I attempt

to find an approximate mapping of node identifiers. Unlike the isomorphic mapping, this

mapping will likely be incomplete, which means that more of the transferred material will be

inaccessible to subsequent rules during transfer. For this mapping, I exploit the deterministic

renaming of node identifiers to make the assumption that identifiers of the same form—that

is, those with the same variable type10 and traversal step—occupy equivalent positions in

their respective subgraphs. This assumption (as with the assumption about isomorphism

10Recall from Section 5.5 that in the PENMAN serialization I embed the variable type into the node
identifiers.
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(e0 / _miru_v_1
:ARG2-NEQ (x1 / _yume_n_1

:ARG1-EQ-of (e2 / _osoroshii_a_1)))

(e0 / _have_v_1
:ARG2-NEQ (x1 / _dream_n_1

:ARG1-EQ-of (e2 / _terrible_a_for)))

(e:ARG2-NEQ(x:ARG1-EQ-of(e)))
=

(e:ARG2-NEQ(x:ARG1-EQ-of(e)))

e0 → e0
x1 → x1
e2 → e2

_miru_v_1+_yume_n_1+_osoroshii_a_1--_have_v_1+_dream_n_1+_terrible_a_for--mtr := monotonic_mtr &
[ INPUT.RELS < #p [ PRED "ja:_miru_v_1_rel", LBL #h0, ARG0 #e1, ARG2 #x2, ARG1 #x3 ] ,

[ PRED "ja:_yume_n_1_rel", LBL #h4, ARG0 #x2 ] ,
[ PRED "ja:_osoroshii_a_1_rel", LBL #h4, ARG0 #e5, ARG1 #x2 ] >,

OUTPUT.RELS < #p [ PRED "_have_v_1_rel", LBL #h0, ARG0 #e1, ARG2 #x2, ARG1 #x3 ] ,
[ PRED "_dream_n_1_rel", LBL #h4, ARG0 #x2 ] ,
[ PRED "_terrible_a_for_rel", LBL #h4, ARG0 #e5, ARG1 #x2 ] > ].

Figure 7.4: Source (top-left) and target (mid-left) subgraphs for恐ろしい夢を⾒る osoroshii
yume-wo miru “have a terrible dream”, with the reduced form for structural comparison
(top-right), the node-identifier bijection (mid-right), and the resulting MTR (bottom)

above) will sometimes be wrong, but I conjecture that it is better to have a partially correct

bilingual binding than to have transferred material that cannot be expanded on at all. In

order to get the bijection of node identifiers, I therefore take the intersection of source–

target node identifier forms and use it to inform the binding of the scope labels and intrinsic

variables of corresponding EPs. This method will always map the EP corresponding to the

top subgraph node in the source subgraph (i.e., the first node in the PENMAN serialization)

to the EP corresponding to the top subgraph node in the target subgraph because I only

pair subgraphs with the same top-variable type (i.e., the top node identifier will always be

e0, x0, i0, or u0). The non-isomorphic mapping may be incomplete, however, so I assume

that any remaining nodes are unaligned. If I do not provide a mapping of variable forms

for these unaligned EPs, their original form may unintentionally coindex with a mapped

form or with one from another unaligned EP, so I add mappings for each unaligned variable
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to a unique new variable. These unique mappings differentiate the variables for unaligned

EPs so internal argument structure is retained without creating unintentional monolingual

or bilingual correspondences.

Fig. 7.5 shows an example for すぐ医者に電話する sugu isha-ni denwa suru “call

the doctor right away”. These subgraphs are not structurally isomorphic, as shown by the

structural comparision strings, so a full bijection of node identifiers is not guaranteed.11

For the subgraphs in Fig. 7.5, only two of the four nodes for both source and target were

mapped, but the MTR creation was able to integrate the other material by relying on

the monolingual structure. For example, the Jacy predicate _sugu_n_time (for すぐ sugu

“soon”) modifies _denwa_s_1 (for 電話 denwa “call”) via the abstract predicate unspec_p,

whereas the equivalent ERG predicate _right+away_p directly modifies _call_v_1. The

nodes for these predicates were not mapped as they had differing node identifier forms, but

both unspec_p and _right+away_p modify the appropriate EPs in the transfer rule (and

both share a scope label with their modifiees) by relying on their respective monolingual

structures which target nodes that were in the partial node-identifier bijection. Furthermore,

the variables that were not bound from the partial bijection are differentiated (as e4, x5,

and h6 in the source side, and h7, h8, and e9 in the target side) so they keep monolingual

structure intact (e.g., x5 links unspec_p and _sugu_n_time, and h8 allows _the_q to qeq

_doctor_n_1) without creating unintentional bilingual correspondences.

Both methods of bilingual variable binding (for isomorphic and non-isomorphic sub-

graphs) rely on many assumptions and are likely to introduce error, but without any binding

the transfer process will suffer. Without the information about which source variables cor-

respond to which target variables, the transfer engine can still replace one subgraph with

the other and maintain monolingual argument structure. It will, however, be unable to link

variables within the subgraph to those in the outer structure. Consider (12), where とても
totemo “very” is an intensifier that attaches to うるさい urusai “noisy”, and the structure

11It is possible to get a complete mapping if role names or structural attachment differ, as long as the
subgraphs have the same count, order, and types of identifiers.
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(e0 / _denwa_s_1
:ARG2-NEQ (x1 / _isha_n_1)
:ARG1-EQ-of (e2 / unspec_p

:ARG2-NEQ (x3 / _sugu_n_time)))

(e0 / _call_v_1
:ARG2-NEQ (x1 / _doctor_n_1

:RSTR-H-of (u2 / _the_q))
:ARG1-EQ-of (e3 / _right+away_p))

(e:ARG2-NEQ(x)
:ARG1-EQ-of(e:ARG2-NEQ(x)))

̸=
(e:ARG2-NEQ(x:RSTR-H-of(u))

:ARG1-EQ-of(e))

e0 → e0
x1 → x1

_denwa_s_1+_isha_n_1+unspec_p+_sugu_n_time--_call_v_1+_doctor_n_1+_the_q+_right+away_p--mtr :=
monotonic_mtr &
[ INPUT.RELS < #p & [ PRED "ja:_denwa_s_1_rel", LBL #h0, ARG0 #e1, ARG2 #x2 ] ,

[ PRED "ja:_isha_n_1_rel", LBL #h3, ARG0 #x2 ] ,
[ PRED "ja:unspec_p_rel", LBL #h0, ARG0 #e4, ARG1 #e1, ARG2 #x5 ] ,
[ PRED "ja:_sugu_n_time_rel", LBL #h6, ARG0 #x5 ] >,

OUTPUT.RELS < #p & [ PRED "_call_v_1_rel", LBL #h0, ARG0 #e1, ARG2 #x2 ] ,
[ PRED "_doctor_n_1_rel", LBL #h3, ARG0 #x2 ] ,
[ PRED "_the_q_rel", LBL #h7, ARG0 #x2, RSTR #h8 ] ,
[ PRED "_right+away_p_rel", LBL #h0, ARG0 #e9, ARG1 #e1 ] >,

OUTPUT.HCONS < qeq & [ HARG #h8, LARG #h3 ] > ].

Figure 7.5: Source (top-left) and target (mid-left) subgraphs for すぐ医者に電話する sugu
isha-ni denwa suru “call the doctor right away”, with the reduced form for structural compar-
ison (top-right), the node-identifier bijection (mid-right), and the resulting MTR (bottom)
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is isomorphic in the source and target MRSs. If the transfer grammar has an MTR that

accurately transfers うるさい⽝ urusai inu “noisy dog” and a separate MTR that transfers

とても totemo “very”, then the target-side EP for very would only be able to attach to noisy

if there was a bilingual variable binding for the うるさい urusai “noisy” EP on the source

side and noisy EP on the target side. Otherwise, the EP for very would be unattached,

leaving the MRS disconnected and likely unable to be realized as translations.

(12) とても
totemo
very

うるさい
urusai
noisy

⽝
inu
dog

が
-ga
-nom

吠える
hoeru
bark

“The very noisy dog barks.” [jpn]

7.3.3 MTR Instance Creation

In the final stage, I take the converted MRS structures and the bilingual variable bindings

and produce an MTR instance. I first assign a valid MTR type—either monotonic_mtr or

monotonic_omtr, depending on the relative location of the MTRs in the transfer grammar

(see Section 7.1.2)—and a unique and valid identifier. I next add the input and output

components to the MTR instance’s attribute-value matrix, which will house the source and

target MRS structures, respectively. I add the source and target EPs to input.rels and

output.rels and handle constraints, if any, to input.hcons and output.hcons,12 re-

placing the variables with those identified in the bilingual variable mapping (whether they

are bound to the same form or differentiated). I also set a flag on the top EPs directly13 for

copying untransferred material within the EPs, shown in Figs. 7.4 to 7.8 as #p before the

first source and target EPs. This flag is similar in form to variable coindexation, but serves

a different purpose. It helps with the elements I do not model, such as variable properties,14

and with role arguments that were not included of the original subgraph pair.

12Jacy currently does not have support for individual constraints, or icons, so this feature is not added.
13It is possible to flag other EPs in the same way, but I do not explore that possibility in this dissertation.
14The variable properties will then be transformed by the variable-property mapping, or VPM.
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Consider the single-node subgraphs in Fig. 7.6, which represent the simplest possible

pairing. Both nodes have x variables and single predicates without arguments, so the MTR

in Fig. 7.6 only constructs EPs for the nodes with the scope label and intrinsic variable

identified. Fig. 7.7 shows a pair of isomorphic subgraphs with two nodes each. The resulting

MTR is able to bind all variables bilingually because they are structurally identical. Fig. 7.8

shows a non-isomorphic subgraph pair where the source has one node and the target has

two. The non-isomorphic method of bilingual variable binding is, in this case, able to bind

not only the scope label, but also the intrinsic variable of the source EP to the top EP of the

target. The monolingual variable binding from the DMRS-to-MRS conversion of the target

was able to coindex the arg1 of the second target EP to the intrinsic variable of the first.

(x0 / _taiyou_n_1) (x0 / _sun_n_1)

_taiyou_n_1--_sun_n_1--mtr := monotonic_mtr &
[ INPUT.RELS < #p & [ PRED "ja:_taiyou_n_1_rel", LBL #h1, ARG0 #x2 ] >,

OUTPUT.RELS < #p & [ PRED "_sun_n_1_rel", LBL #h1, ARG0 #x2 ] > ].

Figure 7.6: Subgraphs and MTR for 太陽 taiyou → sun

(x0 / _tegami_n
:ARG1-EQ-of (e1 / _omoshiroi_a_1))

(x0 / _letter_n_of
:ARG1-EQ-of (e1 / _interesting_a_for))

_tegami_n+_omoshiroi_a_1--_letter_n_of+_interesting_a_for--mtr := monotonic_mtr &
[ INPUT.RELS < #p & [ PRED "ja:_tegami_n_rel", LBL #h1, ARG0 #x2 ],

[ PRED "ja:_omoshiroi_a_1_rel", LBL #h1, ARG0 #e3, ARG1 #x2 ] >,
OUTPUT.RELS < #p & [ PRED "_letter_n_of_rel", LBL #h1, ARG0 #x2 ],

[ PRED "_interesting_a_for_rel", LBL #h1, ARG0 #e3, ARG1 #x2 ] > ].

Figure 7.7: Subgraphs and MTR for ⾯⽩い⼿紙 omoshiroi tegami → interesting letter

MTR instance creation allows me to transform the subgraph representation I use for much
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(x0 / _濁⽔ _n_unknown) (x0 / _water_n_1
:ARG1-EQ-of (e1 / _murky_a_1))

_濁⽔ _n_unknown--_water_n_1+_murky_a_1--mtr := monotonic_mtr &
[ INPUT.RELS < #p & [ PRED "ja:_濁⽔ _n_unknown_rel", LBL #h5, ARG0 #x4 ] >,

OUTPUT.RELS < #p & [ PRED "_water_n_1_rel", LBL #h5, ARG0 #x4 ],
[ PRED "_murky_a_1_rel", LBL #h5, ARG0 #e7, ARG1 #x4 ] > ].

Figure 7.8: Subgraphs and MTR for 濁⽔ dakusui → murky water

of the transfer grammar augmentation process into the TDL-based representation required

by the transfer machinery. It is the final step before a grammar is ready to be compiled and

used for transfer.

7.4 Transfer Grammar Maintenance

As noted above, it is normal for a static transfer grammar to become stale, or no longer

compatible, with respect to the source and target grammars it was created for. This can

happen whenever the source or target grammars change their semantic model. For automat-

ically augmented transfer grammars, like those explored in this dissertation, the stale MTRs

can generally be refreshed to the modern grammars by rerunning the extraction process.

It is therefore useful, when extracting MTRs, to note the version of the source and target

grammars used, so that the maintainer or user of the transfer grammar knows when MTR

refreshing might be needed.

The core transfer grammar can not be refreshed automatically. Rule types, hand-written

rules, and any pre- or post-transfer transformations need to be updated manually. For a

template-based approach like that of Haugereid and Bond 2011, 2012, the templates them-

selves can become stale, e.g., by targeting MTR types, source semantic patterns, or target

semantic patterns that have changed. In these cases the template code must be manually

updated.
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The core JaEn grammar contains several thousand hand-built rules, but most of those

are for proper names. In contrast, the automatically generated rules can number in the tens

or hundreds of thousands (see Sections 9.6.3 and 9.7.3 for the rule counts of my experimental

systems). Manually updating the much smaller set of hand-built rules is not infeasible and

it is made easier by examining the logs of the generation step of the translation pipeline,

which notes which predicates are incompatible with the target grammar.

7.5 Chapter Summary

In this chapter I have described the basics of the LOGON transfer machinery in Section 7.1.

In Section 7.2 I explained how I overcame some challenges with producing efficient transfer

grammars. In Section 7.3 I detailed how I create MRS transfer rules without templates

Finally in Section 7.4 I discussed some issues of long-term transfer grammar maintenance.

This process of augmenting transfer grammars relies on the semantic operations defined

in Chapter 5 and the methods of extracting bilingual subgraph pairs in Chapter 6. In

Chapter 9 I make use of transfer grammar augmentation for a number of transfer grammar

configurations.
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Chapter 8

DATA EXPLORATION

I use three different data sources in my experiments, so in this chapter I will explore some

properties of the data in order to better understand what my system is learning from. In

Section 8.1 I list the sources with a brief qualitative description of their contents. I perform

a basic analysis of the data in Section 8.2, and an analysis of parsing performance on the

data in Section 8.3.

8.1 Data Sources and Divisions

This section briefly describes the three datasets. All three are Japanese-English sentence-

aligned bilingual corpora publicly available under open licenses.

8.1.1 Tanaka Corpus

The Tanaka Corpus (Tanaka, 2001) is a modestly-sized corpus of roughly 150k sentences.

The original corpus was produced by students of Professor Yasuhito Tanaka at Hyogo Uni-

versity. Professor Tanaka tasked each student with creating 300 translations, and after

several years he had amassed 212k translations. This corpus, however, had translations

taken from language textbooks, Bible verses, song lyrics, etc., and moreover there were a

number of spelling and grammatical errors, duplicates, and mistranslations. It is unknown if

the students translated originally Japanese sentences to English or vice versa, but it is likely

that translations in both directions exist in the corpus. Revisions by subsequent maintainers

of the corpus1 removed bad or duplicated data and reduced the number to around 150k.

1See http://www.edrdg.org/wiki/index.php/Tanaka_Corpus for more information about the history
of the corpus.

http://www.edrdg.org/wiki/index.php/Tanaka_Corpus
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Sentences pairs are solitary translations, i.e., they are without any context from discourse.

Tanaka (2001, pp. 1–2) claims that 40% of the sentences use a personal pronoun as the sen-

tence subject, that the genre is “everyday-use sentences”, and that ∼7.5% are interrogatives

and ∼1% are exclamatives. Some examples from the corpus (glossing is my own, here and

for examples throughout the chapter) are given in (13)–(15).

(13) 彼
kare
3sg.m

は
-wa
-top

その
sono
that

運動
undou
campaign

に
-ni
-dat

関係
kankei
relation

が
-ga
-nom

ある
aru
exist

の
-no
-nmlz

です
desu
cop.hon

か。
ka
q

“Does he have anything to do with the campaign?” [jpn]

(14) その
sono
that

単語
tango
word

を
-wo
-acc

辞書
jiten
dictionary

で
-de
-ins

ひい
hii
look.up

て
-te
-inf

ごらん。
-goran
-try

“Look up the word in your dictionary.” [jpn]

(15) 鈴⽊
suzuki
Suzuki

さん
-san
-hon

に
-ni
-dat

は
-wa
-top

娘
musume
daughter

が
-ga
-nom

３
3
3

⼈
-nin
-numcl

いる。
iru
be

“Mr Suzuki has three daughters.” [jpn]

The Tanaka Corpus is currently maintained by the Tatoeba Project,2 but I use a version

that is distributed with the Jacy Japanese grammar (Siegel et al., 2016) at https://github.

com/delph-in/jacy. The corpus is closely linked with the grammar as it is one of the main

sources of testing data used in the grammar’s development. Jacy’s version of the corpus

contains some additional metadata about the well-formedness of each sentence.3 For a small

subset of the corpus, this metadata indicates the items are to be ignored because they, for

instance, contain non-sentential data, multiple sentences in one item, etc. The other corpora

do not have this metadata at all, so I elect to ignore the metadata and attempt to parse each

item anyway.

2https://tatoeba.org/
3See http://moin.delph-in.net/ItsdbReference for an explanation of the i-wf field.

https://github.com/delph-in/jacy
https://github.com/delph-in/jacy
https://tatoeba.org/
http://moin.delph-in.net/ItsdbReference
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Francis Bond, the maintainer of the Jacy grammar, has defined splits of the Tanaka

Corpus for development, testing, and training data. Equivalent amounts are set aside for

development and testing data, then the remainder is for training. The sentence counts of

each split are given in Table 8.1.

Development 4,500

Testing 4,500

Training 141,342

Table 8.1: Data splits for the Tanaka Corpus

8.1.2 Japanese-English Bilingual Corpus of Wikipedia’s Kyoto Articles

The Japanese-English Bilingual Corpus of Wikipedia’s Kyoto Articles (hereafter the Kyoto

Corpus)4 is a large collection of English translations of existing Japanese Wikipedia5 articles

about Kyoto. The translations were produced by Japan’s National Institute of Information

and Communications Technology (NICT)6 for the purpose of aiding machine translation, so

the translations are tight and sentence-by-sentence. The corpus contains nearly 500k trans-

lation pairs across 15 categories, such as culture, literature, and railways. The translations

are close and accurate, but there are a large number of proper names, sometimes using the

original Japanese orthography in the English sentences, and there are many long sentences.

It, however, also has a number of very short entries, as everything from page titles to figure

captions were translated. (16) and (17) are some examples from the Kyoto Corpus.

4https://alaginrc.nict.go.jp/WikiCorpus/index_E.html
5https://www.wikipedia.org/
6https://nict.go.jp/

https://alaginrc.nict.go.jp/WikiCorpus/index_E.html
https://www.wikipedia.org/
https://nict.go.jp/
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(16) 1997
1997
1997

年
-nen
-numcl

（平成
(heiwa
(Heiwa

9
9
9

年）
-nen)
-numcl)

5
5
5

⽉
-gatsu
-numcl

22
22
22

⽇
-nichi
-numcl

京都
kyoto
Kyoto

市営
shiei
municipal

地下鉄
chikatetsu
subway

東⻄
touzai
Touzai

線
-sen
-line

の
-no
-gen

開業
kaigyou
opening

に
-ni
-dat

先⽴って
sakidatte
prior.to

御池
oike
Oike

駅
-eki
-station

を
-wo
-acc

烏丸御池
karasuma.oike
Karasuma.Oike

駅
-eki
-station

に
-ni
-loc

改称。
kaishou
renaming

“On May 22, ‘Oike Station’ was renamed ‘Karasuma Oike’ for the coming Kyoto
Municipal Subway Tozai Line’s opening.” [jpn]

(17) 源⽒
genji
Genji

物語
monogatari
story

“The Tale of Genji” [jpn]

The Kyoto Corpus did not have pre-defined data splits, so I split the data into contiguous

blocks of development, testing, and training data following the order and proportions of the

Tanaka Corpus. The sentence counts per split are given in Table 8.2.

Development 19,000

Testing 19,500

Training 448,730

Table 8.2: Data splits for the Kyoto Corpus

8.1.3 Japanese Wordnet Examples and Definitions

The Japanese WordNet (Bond et al., 2009) is a large semantic dictionary for Japanese,

following the pattern of the Princeton WordNet (Fellbaum, 1998) for English. Both wordnets

contain example sentences and definition sentences, so the Japanese WordNet Corpus7 is the

7Available at http://compling.hss.ntu.edu.sg/wnja/index.en.html

http://compling.hss.ntu.edu.sg/wnja/index.en.html
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pairing of example or definition sentences for entries that share a linked sense between the

two wordnets. The pairing results in a corpus of about 180k sentences. Like the Tanaka

Corpus, the sentences are relatively short, simple, and solitary. But, like the Kyoto Corpus,

some entries are just a noun phrase or a single word, and are thus not full sentences. (18) is

a sentence from the definitions subset, and (19) is a sentence from the examples subset.

(18) 太陽
taiyou
sun

の
-no
-gen

⼤気圏
taikiken
atmosphere

の
-no
-gen

最も
mottomo
supl

外側
sotogawa
outside

の
-no
-gen

領域
ryouiki
region

“the outermost region of the sun’s atmosphere” [jpn]

(19) 午後
gogo
afternoon

は、
-wa
-top

とても
totemo
very

前途有望
zento-yuubou
future-promising

に
-ni
-adv

始まっ
hajimat
begin

た
-ta
-pfv

“the afternoon had begun so promising” [jpn]

The Japanese WordNet Corpus, like the Kyoto Corpus, did not have pre-defined data

splits, so I followed the pattern of the Tanaka Corpus. The sentence counts per split are

given in Table 8.3.

Development 7,500

Testing 7,500

Training 168,968

Table 8.3: Data splits for the Japanese WordNet Corpus

8.1.4 Total Split Counts

The total sentence counts for all three corpora are given in Table 8.4. These sentence counts

are for all sentence pairs, but not necessarily the number of items that my system uses in

model training or in evaluation. See Section 8.5 for more information.
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Development 31,000

Testing 31,500

Training 759,040

Table 8.4: Data splits for all corpora

8.2 Basic Analysis

I first count the number of sentences,8 the vocabulary size, and the number of tokens in each

corpus. In order to get the English tokens, the string is downcased and split on spaces. For

the Japanese tokens, I use the MeCab morphological analzer (Kudo, 2005) to segment the

string at each morpheme boundary. The counts for the full corpora are given in Table 8.5.

The Tanaka Corpus and the Japanese WordNet Corpus have a similar number of sentences

at 150,342 and 183,968, respectively, while the Kyoto Corpus has roughly three times as

many at 487,230. The Kyoto Corpus has more than three times as many tokens, however,

because the average sentence length is much longer. The standard deviation of sentence

length is also much higher on the Kyoto Corpus, as there are many long and many short

sentences, whereas the Tanaka and Japanese Wordnet corpora are more consistent in their

sentence length.

Within each corpus, the token count for Japanese sentences is significantly higher than

the English sentences, while the vocabulary size is significantly lower. This is because the

Japanese tokens from the morphological analyzer splits morphological components from

stems. Thus, each word in Japanese can result in multiple tokens, and because the mor-

phology is fairly regular, these tokens often share the same form. The English data is not

morphologically analyzed, nor is it stemmed, so each variation in form (e.g., run, runs, ran,

running) counts as a single token but a different vocabulary item. To help avoid spurious

8I use the word sentence in this section to mean a translation entry, even if the data does not form a
complete sentence.
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variations, I lowercase all tokens when counting the vocabulary, but otherwise no normal-

ization is done. Japanese, however, can represent the same word in multiple orthographies

(e.g., 京都, きょうと, キョウト, or Kyoto) that cannot be easily normalized, so these can

increase the vocabulary size.

Tokens

Corpus Sentences Vocaba Total Minb Max Avg Stdev Tok/Vcb

Tanaka-J 150,342 31,300 1,614,571 1 80 10.74 4.47 51.58

Tanaka-E 150,342 40,385 1,189,313 1 45 7.91 3.21 29.45

Kyoto-J 487,230 117,498 10,707,594 0 469 21.98 18.00 91.13

Kyoto-E 487,230 415,298 9,946,139 0 340 20.41 16.48 23.95

WordNet-J 183,968 46,923 1,897,032 1 106 10.31 6.71 40.43

WordNet-E 183,968 75,126 1,454,617 1 64 7.91 4.88 19.36

Total-J 821,540 137,501 14,219,197 0 469 17.31 15.42 103.41

Total-E 821,540 466,326 12,590,069 0 340 15.32 14.35 27.00
a English vocabulary is case-normalized
b Sentences of 0 tokens are blank lines; these are rare

Table 8.5: Sentence and token counts for the corpora

To get a better idea of the spread of sentence lengths across each corpus, I count the

number of sentences for each token count, up to 70 tokens.9 Fig. 8.1 plots this data with

the purple bars for Japanese and the gold bars for English. This plot makes it clear that

the Kyoto Corpus more evenly spreads its sentences across many sentence lengths, while the

other two corpora cluster around the average.

Sentence length is a good predictor of the ability of a grammar to successfully parse

a sentence. Table 8.6 lists the number of sentence pairs for each corpus where both the

9See Section 8.3 for the rationale for the 70-token maximum.
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Figure 8.1: Number of sentences per token-count.
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Japanese and the English side had fewer than or equal to 70, 35, or 20 tokens. As expected,

there is little effect on the Tanaka or Japanese WordNet corpora, as they have very few long

sentences, but the Kyoto Corpus is nearly halved when both sides have 20 or fewer tokens.

Number of tokens

Corpus <= 70 <= 35 <= 20

Tanaka 150,341 150,002 145,547

Kyoto 476,375 378,549 244,925

WordNet 183,964 182,857 168,981

Total 810,680 711,408 559,453

Table 8.6: Number of sentences with a maximum of 70, 35, or 20 tokens

The corpora are also not free of duplicate entries, which can have a number of positive

or negative effects on the system. Where it is useful to distinguish between duplicates that

occur natural distribution of the data and those that occur because of workflow errors (e.g.,

where data is inadvertently copied or when splits overlap), I will call the former identicals

and the latter spurious duplicates. For statistical systems that learn from patterns in

the data, duplicates can increase the frequency, and thus the weight, of common patterns.

In translation, one-sided duplicates (where one side, source or target, of a bilingual corpus

is constant but the other side varies) can provide useful information about variability. In

evaluation, a system might do better on test items that it has seen in training, and this

is a situation where the difference between identicals and spurious duplicates is important.

Leaking information (e.g., from spurious duplicates, intermediate results, or models) from

training data in to the testing data is a kind of malpractice in data science that can cause

artificially inflated evaluation scores, and sometimes it is not obvious where the leak has

occured. When an item in one set (e.g., the training set) is duplicated in another (e.g., the
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testing set), I will call it an interset duplicate, and when it occurs in the same set it is an

intraset duplicate.

There are different schools of thought about how to handle duplicate entries. While it

is generally the case that spurious interset duplicates should be avoided, practices differ on

identicals and spurious intraset duplicates. One technique is to intentionally duplicate high-

quality or important parts of the training data in order to give it more weight. For identical

translation pairs (i.e., where the pairing of the source and target sentence are duplicated), one

practice is to remove them throughout the corpus, especially for interset identicals. Others,

however, consider it important to maintain the natural distribution of the data. If the testing

data has identicals it performs well on, the evaluation score will go up compared to a fully

deduped test set. Conversely, if the system does poorly on the identicals, the score will go

down compared to the deduped test set. In these situations, the difference in score does not

say much about the systems ability to perform well on different kinds of data, but it does say

how well the system does on data that is representative of the natural distribution. Whether

to remove duplicates, then, depends on the task at hand and the goal of evaluation. For

this dissertation I choose to keep the natural distribution of the data and not remove any

duplicates.

There are also more methodological considerations regarding duplicate translation pairs.

If my system, for instance, noticed that a test item was identical to a training item and merely

output a stored translation instead of doing the normal analyze-transfer-realize process, it

might boost the evaluation scores but would simultaneously obfuscate the virtues of my

methodology, and would thus be malpractice.10

Tables 8.7 to 8.9 show the duplicate counts across the training, development, and test

data splits of the original corpus. There are three groups in the tables, one for duplicates

only in the Japanese side, one for those in the English side, and one for those where the

pair of ⟨Japanese, English⟩ sentences has been duplicated. Within each group, there are two

10For user-facing applications, however, this is a sound tactic that can increase reliable translations while
reducing resource usage and response time.
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columns: one for the number of original (i.e., first occurrence) items that have duplicates,

and one for the number of redundant (i.e., beyond the first occurrence) items, such that

the size of a deduped corpus is the redundant count subtracted from the original corpus

size. The total rows in the tables are not the sums of the columns, but the duplicate counts

considering all corpora together, so that repeated items across corpora are counted as well.

Japanese English Translation

Corpus Original Redundant Original Redundant Original Redundant

Tanaka 1 1 6,682 8,839 0 0

Kyoto 9,210 33,592 6,779 25,627 4,643 23,574

WordNet 1,514 2,043 1,668 2,391 849 1,235

Total 10,883 35,904 15,192 36,992 5,514 24,872

Table 8.7: Duplicate sentences in training data

Japanese English Translation

Corpus Original Redundant Original Redundant Original Redundant

Tanaka 0 0 14 15 0 0

Kyoto 314 738 254 582 179 484

WordNet 7 7 5 5 2 2

Total 322 747 273 602 181 486

Table 8.8: Duplicate sentences in development data

The Tanaka Corpus, having been revised to remove duplicates pairs, shows only one

duplicate Japanese sentence in the training data, and none in the development or test data,

and no duplicate translation pairs in any subset. There are, however, many duplicate English



144

Japanese English Translation

Corpus Original Redundant Original Redundant Original Redundant

Tanaka 0 0 9 9 0 0

Kyoto 343 965 256 793 211 706

WordNet 4 5 6 7 3 4

Total 349 972 271 809 214 710

Table 8.9: Duplicate sentences in test data

sentences, and the disparity between the number of Japanese and English duplicates is due

to two or more Japanese sentences with very slight differences having the same English

translation. (20) and (21) show two items with the same English translation but different

Japanese sentences. The only difference is that (21) uses the third-person pronoun 彼 kare

“he” instead of the second-person 君 kimi “you”.11 The other two corpora have not been

revised to remove duplicates, and thus there are much higher numbers of them. The Kyoto

Corpus has many repeated headings, such as Summary, which occurs 2,161 times in the

training data. The Japanese WordNet Corpus has many duplicates across the Japanese

and English sentences and the translation pairs. Compared to the Tanaka Corpus, which

is similar in size, the Japanese WordNet Corpus has significantly fewer English duplicates

because it is not plagued by the same problem of having slight differences in Japanese map

to the same English sentences.

(20) 君
kimi
2sg

は
-wa
-top

⾃分
jibun
refl

で
-de
-ins

重要
juuyou
important

だ
da
cop

と
to
comp

思う
omou
think

本
hon
book

を
-wo
-acc

読む
yomu
read

べき
beki
deo

だ。
da
cop

“You should read such books as you consider important.” [jpn]

11Note that the translation of (21) is thus inaccurate—He should... would be better. The students who
produced the corpus items may have created these kinds of near-duplicates by sharing and modifying
translations with each other, or by using the same reference material.
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(21) 彼
kare
3sg.m

は
-wa
-top

⾃分
jibun
refl

で
-de
-ins

重要
juuyou
important

だ
da
cop

と
to
comp

思う
omou
think

本
hon
book

を
-wo
-acc

読む
yomu
read

べき
beki
deo

だ。
da
cop

“You should read such books as you consider important.” [jpn]

Table 8.10 shows the number of test items that are duplicated in the combined train-

ing and development data. That is, the original columns show the number of unique test

sentences that have duplicates in the development and training data, and the redundant

columns show the number of times those sentences occur outside of the test set.

Japanese English Translation

Corpus Original Redundant Original Redundant Original Redundant

Tanaka 0 0 273 764 0 0

Kyoto 1,194 16,295 690 12,178 464 5,517

WordNet 143 262 163 362 82 167

Total 1,347 16,610 1,355 13,334 548 5,699

Table 8.10: Duplicates of testing data in the training and development data

8.3 Analysis of Parsing Performance

In this section I analyze the performance of a parser on the corpora. As my system requires

semantic representations for both the source and target sides of the bitext corpora in order

to extract transfer rules, the parsing results can show the upper bound of the training data

that is usable, and can shed some light on the quality of the analyses.

I parsed the Japanese data with Jacy and the English data with the ERG using the ACE

processor.12 ACE only attempts to parse up to 70 tokens in an input item, so in the following

charts I only show the results for up to 70-token sentences. Furthermore, I added additional

12http://sweaglesw.org/linguistics/ace/

http://sweaglesw.org/linguistics/ace/
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constraints on the time and memory allowed per input item, as shown in Table 8.11. While

these constraints can reduce the number of items that get a parse, they are beneficial in that

they prevent very difficult items from taking excessively long to process, and they help to

regularize the processing performance across multiple runs. I also split the parsing task into

jobs of 500–1,500 sentences and ran the jobs on a computing cluster. Information about the

cluster machines is given in Table 8.12.

maximum sentence length 70 tokens

maximum number of results 5 results

parsing timeout 10 seconds

chart memory 4096 MiB

unpacking memory 4096 MiB

Table 8.11: Parsing constraints for ACE

Operating System CentOS 7

Processor Intel Xeon 2.2GHz–3.5GHz

Memory 12 GiB allocated per job

Table 8.12: Machine information

The parsing coverage is plotted in Fig. 8.2. As before, Japanese results are in purple

and English in gold. For ease of reference, the number of sentences per sentence length

is plotted in light purple and light gold. Note that the coverage plots use the right axis

and range from 0% to 100%, so, for example, Jacy has about 80% coverage of the ∼17k

sentences of the Tanaka corpus with 10 tokens. In general the ERG, a more mature and

well-rounded grammar, gets better parsing coverage than Jacy. All three corpora show
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reasonably expected downward trends as the sentence length increases, although Jacy on the

Kyoto Corpus has a steep decline until sentences of 6 or 7 tokens, then it levels to a more

gradual decline. This trend, I suspect, is due to Jacy being less capable than the ERG of

dealing with incomplete sentences, as the shorter sentences in the Kyoto Corpus are often

titles, captions, headings, and other kinds of non-sentential material. After 35 tokens, the

parsing coverage declines rapidly, and in the case of the Tanaka and Japanese WordNet

corpora, the plots become erratic as there are so few sentences at the higher lengths.

Figure Fig. 8.3 plots at each sentence length the average time taken for a successful parse,

with the upper-bound of the y-axis set to the timeout value of 10 seconds. As before, the

sentence-length distribution, and now also parsing coverage, are plotted in a lighter color.

I do not include timing information for failed parses as I do not have per-item information

about those that failed due to exceeding the timeout. The ERG generally takes much longer

than Jacy to reach an analysis, perhaps because it has a greater range of possible analyses to

attempt, i.e., Jacy fails more quickly as it exhausts its search space. With the ERG, there is

a correlation between the increase of parsing time and the decrease of coverage, suggesting

that many of the items failed due to reaching the timeout. Failing due to timeout does

not imply that a larger timeout would yield any results, as it could simply be an item the

grammar cannot fully model. This latter case may be more applicable with Jacy here, as

Jacy’s parsing time is less correlated to coverage than it is with the ERG.

Fig. 8.4 plots at each sentence length the average memory required to parse an item, with

the upper-bound set to 4 GiB, the maximum memory I allowed. As before, the sentence-

length distribution, and now also parsing coverage, are plotted in a lighter color. The

memory usage, as expected, gradually climbs with the increase in sentence size. While

the memory usage of failed items is not included in these charts, the average usage is far

from the maximum, and I only find one item failing due to the memory limit.

To summarize, the ERG exhibits greater coverage than Jacy, especially for corpora that

are not the Tanaka corpus, but this coverage has a cost in terms of the time and memory

required to get a parse. While English items that fail to parse with the ERG seem to failing
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Figure 8.2: Parsing coverage for each sentence length.
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Figure 8.3: Average per-item parsing time for each sentence length.
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due to the timeout, Japanese items do not show such a trend, and instead seem to failing

simply due to a lack of encoded analyses or lexical entries.

8.4 Analysis of Generation Performance

The fact that the implemented grammars are bidirectional is important for my translation

methodology, as I use the ERG to generate surface realizations from the semantic representa-

tions transferred from the Jacy-produced representations, but I can also use this functionality

to generate surface realizations from ERG-parsed representations. This task is called rephras-

ing (also, paraphrasing), as opposed to translation. Rephrasing can be used to estimate the

expected upper bound of translation performance, as it shows what the target grammar can

generate given ideal semantic inputs. However, this is only an estimate because, even with

ideal semantic inputs, the target grammar will not exhibit perfect performance, as described

below. Also, it is possible to translate an item where the target grammar cannot parse the

reference string (i.e., when the semantics transferred from the source representation can be

realized by the target grammar), so rephrasing will not be able to show the target grammar’s

performance on those items at all.

The grammar can tell me every semantic representation it can assign to a sentence,

assuming it does not time out or run out of memory during parsing, and these representations

are also the full set that can generate to the original string, so this analysis task seems at first

to be uninteresting—I should always be able to get the original string. There are, however, a

number of reasons why it’s not always possible to generate the originally parsed string. First,

I am not storing every realization result, and, as discussed in Section 4.6, the realization-

selection model is not as sophisticated as the parse-selection model, so it is possible that the

top N realizations per input do not include the original sentence, even if it is possible for the

grammar to generate it. Second, it’s possible that the grammar is incapable of generating

a sentence that it can parse (the core grammar itself is bidirectional, but the preprocessing

and postprocessing steps may not be). For instance, the ERG will parse contractions like

they’ll, but its default configuration for generation is to only realize the full form (e.g., they
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will), in order to cut down on uninformative ambiguity. Similarly, spelling variations will

be normalized (e.g., colour/color), as will capitalization and punctuation. The ERG has

unknown word handling so it can guess the syntactic function of words not in its lexicon,

but ACE does not have the ability to generate from unknown word predicates.13

I analyze the ERG’s generation performance of the English development dataset, in

order to be comparable to my experiments in Chapter 9. I use the same parameters and

environment from Tables 8.11 and 8.12, and I allow a maximum of 20 realization results

(compared to 5 parsing results), again, to be consistent with my experiments in Chapter 9.

Table 8.13 shows the parsing performance, generation performance, and rephrasing BLEU

scores. For parsing performance, I report the coverage and the average results per item

(RPI). For generation, I report the coverage relative to the items that parsed (since one

cannot generate from items with no semantic representations), the absolute coverage, and

the average results per item (cumulative over parse results). For BLEU, I report both the

scores for both the first result and the oracle result, as described in Section 9.1. Note that

the BLEU scores only consider those items that resulted in a rephrasing (i.e., ignoring those

that failed to generate anything), and that capitalization differences are normalized prior to

BLEU calculation.

The ERG performs best on the Tanaka Corpus in terms of coverage and BLEU scores,

and worst on the Kyoto Corpus. The oracle BLEU for the Tanaka Corpus is in the 90s,

meaning that it’s very likely to get back the original string, given ideal semantic inputs.

8.5 The Bisem Corpus

Transfer rule extraction depends on the availability of semantic representations for both

sides of a bitext. Since there is incomplete coverage for the Japanese and English sides of

the bitext, the bilingual semantic (bisem) corpus will necessarily be smaller in size than

the original bitext. Table 8.14 shows the number of successfully parsed items in both the

13The LKB (Copestake, 2002), however, has some limited ability to generate from unknowns.
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Parsing Generation BLEU

Corpus Cov RPI Rel Cov Abs Cov RPI First Oracle

Tanaka 96.4 4.5 95.9 92.4 50.9 69.1 91.7

Kyotoa 77.1 4.6 68.6 52.9 62.1 63.8 78.0

WordNet 92.7 3.9 73.8 68.4 47.2 56.3 81.5

Totala 84.3 4.4 75.0 63.2 55.0 62.7 81.1
a There were processing errors in 5 Kyoto-wiki subsets, preventing them

from being used in the calculations, but the performance across subsets is
fairly consistent, so the numbers should be accurate

Table 8.13: Generation performance on the development data

Japanese and English sides of the training data for each corpus, as well as the results per

item (RPI), up to 2.14

Items Parsed RPI Result Pairs

Corpus Jpn Eng Jpn Eng {1}×{1} {1,2}×{1,2}

Tanaka 113,480 136,120 1.9 1.9 109,769 416,069

Kyoto 168,579 347,906 1.7 1.9 148,227 483,675

WordNet 118,267 155,656 1.8 1.9 111,325 385,472

Total 400,326 639,682 1.8 1.9 369,321 1,285,216

Table 8.14: Bisem counts

Of the ∼759k sentence pairs in the training data, about ∼400k of the Japanese side

and ∼640k of the English side are usable. But in order for my system to be able to learn

14In fact I allowed up to 5 when parsing the training data, as with the other splits, but as I only consider
up to 2 when training my models, I restrict my analysis here to 2 or fewer.
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transfer rules from paired semantic representations, both sides must have a parse, which is

the intersection of the two usable sets, which is ∼369k items.

Each source and target sentence can result in multiple semantic representations, so there

can in fact be more semantic pairings than the intersection of successfully parsed items.

This is not only useful for increasing the amount and variety of data, but also for helping to

capture good subgraph mappings in the case that the first parse is not the best one. With up

to 2 parse results per item, I can get up to 4 pairings for each item pair: ⟨1,1⟩, ⟨1,2⟩, ⟨2,1⟩,

and ⟨2,2⟩. In Table 8.14, the {1}×{1} column shows the number of pairings if I take only the

first result (i.e., the intersection of parsed items), and the {1,2}×{1,2} column shows how

many pairings I get if I take up to 2 results on each side. I report both numbers because,

while I only use the {1,2}×{1,2} data for training my system, the additional pairings still

represent the same input sentences, and thus will not give me as much new information as

a pairing from different sentences.

8.6 Chapter Summary

In this chapter I have described the three corpora I use to train and evaluate my system:

the Tanaka Corpus, the Kyoto Wiki Corpus, and the Japanese WordNet Corpus. Each

corpus exhibits different qualities such as sentence length, variety of vocabulary, duplicate

counts, etc., depending on nature of its source. These differences are further expressed in the

ability of the ERG and Jacy grammars to parse the sentences. By analyzing the generation

performance of the English data, I can estimate the upper bound of performance from an

ideal translation system using these grammars. Finally, as my methodology requires semantic

representations for both sides of the bitext, the bisem corpus I can use for training contains

1,285,216 semantic pairings from 369,321 sentences.
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Chapter 9

EXPERIMENTAL DESIGN

This chapter outlines the experiments used to evaluate my methodology. I first explain

my use of evaluation metrics in Section 9.1, the pipeline processing parameters in Section 9.2,

and how I prepare the data for the various baseline and experimental systems in Section 9.3.

I describe two baseline experiments for comparison: the first (Section 9.4) uses the popular

Moses system (Koehn et al., 2007) to do phrase-based SMT, and the second (Section 9.5) is a

semantic-transfer system that builds on the JaEn grammar (Bond et al., 2011) with transfer

rules automatically extracted by matching rule templates to bilingually-aligned n-grams of

semantic predicates (Haugereid and Bond, 2011, 2012), hereafter referred to as the H&B

system. Moses’s near-ubiquity in statistical machine translation research makes this baseline

system a good landmark for judging the performance of my system on a fixed corpus, while

the H&B system extends the JaEn transfer grammar, like my systems, and is thus suitable

for a direct comparison. I have two different experimental methods for extracting transfer

rules: the first, called LPA (Section 9.6), uses bilingually-aligned n-grams of predicates, like

H&B, but in contrast does not use templates (see Sections 6.1 and 6.2); and the second,

called SGA (Section 9.7), builds a statistical model directly on bilingually-paired semantic

subgraph.

9.1 Evaluation Metrics

Machine translation evaluation metrics compare the system output to a reference translation.

BLEU (Papineni et al., 2001), the most commonly used metric, looks for n-gram matches

between the strings. It is popular because it is intuitive, simple to use, and does not require

resources beyond the system and reference strings, but it is also known for having several
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deficiencies (Culy and Riehemann, 2003; Zhang et al., 2004; Ananthakrishnan et al., 2007).

NIST (Doddington, 2002) is a variant of BLEU that gives more weight to “informative” (i.e.,

rare) n-grams, and has a different penalty formula for differences in string length. METEOR

(Banerjee and Lavie, 2005; Lavie and Agarwal, 2007) aims to be more flexible than BLEU

by giving more weight to unigram recall than precision and also by using stemming and

inexact word matching (i.e., allowing synonyms rather than just exact matches). METEOR

correlates with human judgment more closely than BLEU but the extra resources required

inhibit it from scaling to lower-resource target languages. As I am translating to English,

which has many such resources, METEOR is appropriate for my experiments, in addition to

BLEU and NIST. I use the freely available mteval-v14.pl script1 to calculate both BLEU

and NIST, and I use version 1.5 of METEOR.2

All systems tested, baseline and my own, can produce multiple translations for their

inputs. Moses uses an n-gram language model to rank its outputs, so the top-ranked output

performs well against an n-gram metric like BLEU, and I therefore only record the first result

from Moses. The JaEn-based systems (mine and the H&B baseline) do not use such a model3

so instead I report two BLEU scores for each system, based on the two different translation

selection methods described in Section 4.6. The First method selects the first translation

for each input, while the Oracle method selects the translation with the highest BLEU score

with respect to the reference translation. For the Oracle method, I use a smoothed variant of

BLEU,4 as it gives a useful score for individual sentences, unlike the standard BLEU which

works best over larger samples. Note that Oracle selects using BLEU even when I evaluate

using METEOR or NIST; if I used a different selection method for each metric, the numbers

would not be comparable and the evaluation would be more confusing.

1ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v14.pl, also packaged with Moses 4.0. I addi-
tionally use the wrap-mteval.pl script available at https://github.com/ufal/neuralmonkey
2https://github.com/cmu-mtlab/meteor
3It is possible, but I do not explore the use of target language models in my experiments.
4Namely, NIST geometric sequence smoothing as implemented by the NLTK version 3.2.4, available at

https://github.com/nltk/nltk/releases/tag/3.2.4.

ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v14.pl
https://github.com/ufal/neuralmonkey
https://github.com/cmu-mtlab/meteor
https://github.com/nltk/nltk/releases/tag/3.2.4
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Finally, I also ask human evaluators to compare the results of my system to a baseline for

about 100 sentences. I give the annotators four pieces of information: the original Japanese

sentence, the English reference translation, the output of a baseline system, and the output of

one of my systems. The system outputs are randomized. The annotators have native or near-

native English proficiency as well as reasonable proficiency in Japanese, which helps when

the reference translation is not a close translation of the original sentence. The guidelines

given to the annotators are as follows:

For each item, the original Japanese and English reference sentences are given

along with two (randomly ordered) translations. Choose the *most useful* trans-

lation from the two options, which is the one that most accurately conveys the

original meaning. Minor grammatical mistakes or unnatural-sounding sentences

are ok unless they severely impede understanding. If both equally translate the

meaning, the one with the most fluent or natural English is preferred.

The English reference may not always be reliable, so consult the Japanese sen-

tence if you have doubts. Some translations may be unintentionally comical or

inappropriate; a funny translation is not preferred over a boring one (unless they

are otherwise equivalent). If both translations are equally good or bad in all

respects, select the third option: ”(no meaningful difference)”. This should be

used sparingly.

For example, if the reference is ”The dog chased the cat” and choice (a) is ”The

cat chased the dog” and (b) is ”The dogs are chasing cat”, (b) is preferred despite

the differences in number, tense, and grammaticality. If (a) is ”to be chasing?”

and (b) is ”hot dog”, then option (c) ”(no meaningful difference)” is ok, since

neither option conveys the original meaning.

There is a space at the bottom of the form for (optional) comments and questions.

Human evaluation is time-consuming, so it is only performed for one of my systems on the
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test data.

9.2 Pipeline Parameters for Transfer-based Systems

The H&B baseline system and my experimental systems all use the same parsing, transfer,

and generation software, with the only difference being the rules used in the transfer stage.

I mitigate processing-environment sources of variation by fixing the parameters used by all

systems to the same values so that the experiments are only testing the different approaches

to transfer. Note that these parameters are not relevant for the Moses baseline system as

the underlying software is different, but I use the same training, development, and test data,

as well as the same data preprocessing steps where possible.

ACE5 is used for processing, and Table 9.1 shows the parameters used for parsing, trans-

fer, and generation.6 The parameters are mostly the same for each process, but I use more

generation results than parsing or transfer. In addition, parsing has a parameter for the max-

imum sentence length, which is irrelevant for the other tasks, and similarly generation has

a parameter for disabling the MRS subsumption test. This MRS subsumption test is useful

in the rephrasing task (generating from parsed rather than transferred MRSs) for ensuring

that the MRS of a realized sentence is subsumed by the parsed MRS,7 but for translation

the test is often too restrictive, so I turn it off.

Using the same pipeline parameters for all systems helps to control for variation not

directly due to the transfer rules. The parsing step, described as part of the data preparation

in the following section, is done just once, and its results are reused across the different

experiments.8 Even though the generation parameters are fixed, generation has to be done

5http://sweaglesw.org/linguistics/ace/
6The parsing parameters are the same as in Table 8.11 in Section 8.3, but are repeated here for convenience.
7The details of why this might not be the case are irrelevant here.
8The performance of the parsing process can have per-run variability, as the processing speed, available

memory, current load, etc. of the machine doing the parsing can cause the parser to hit a specified timeout
or memory limit sooner or later, so by parsing once and reusing the results I can control for these sources
of variation.

http://sweaglesw.org/linguistics/ace/
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Value

Parameter Parsing Transfer Generation

sentence length (tokens) 70 n/a n/a

MRS subsumption test n/a n/a no

results 5 5 20

timeout (seconds) 10 10 10

chart memory (MiB) 4096 4096 4096

unpacking memory (MiB) 4096 4096 4096

Table 9.1: ACE parameters for parsing, transfer, and generation

separately in each experiment because it operates on the output of transfer, which is the

variable being manipulated.

9.3 Data Preparation

In order to keep the baseline and experimental systems comparable, I train and evaluate them

on the same data (described in Chapter 8). In addition, I use mostly the same preprocessing

steps for each system. While the Moses baseline uses the bitext view of the data, the JaEn-

based systems (H&B, LPA, and SGA) use the bisem view, i.e., the subset of the data that

has both source and target semantic representations produced by the ERG (Flickinger, 2000)

and Jacy (Siegel et al., 2016) grammars.

Both H&B and LPA use a similar kind of predicate alignments but they involve slightly

different filtering and preparation, so I run the aligner over each set separately. For each,

I align the predicates by first creating a node-only (predicate) linearization of both sides of

the bisem corpus (see Section 6.1.1), then by running Anymalign (Lardilleux et al., 2012)

on the linearized training data. The bisem has up to 5 semantic representations for every

sentence, which means there are up to 25 bilingual semantic pairs per sentence, however I
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only use the first results of the source and target. In contrast, the Moses baseline cannot use

the same alignments as it models lexical tokens and not predicates and SGA does its own

alignments.

I let Anymalign run for 16 hours (following Haugereid and Bond 2012) and let it calculate

the lexical weight in addition to translation probabilities.9 The result is 7,766,440 alignments

covering 1,183,584 unique source predicate phrases and 1,194,382 unique target predicate

phrases.10 With the prepared training data and alignments I can build the baseline and

experimental systems.

9.4 Moses Baseline

The Moses statistical machine translation system (Koehn et al., 2007) is a large collection

of software with many options and tunable parameters. The choice of translation model

(whether phrase-based, hierarchical, or something else) is important, but performance is

also significantly affected by pre- and post-processing of the data.

Shallow preprocessing techniques, such as recasing and tokenization, can have a large

effect on performance as they can normalize the inputs to avoid data-sparsity issues. For

languages with an upper and lower case dictinction in the orthography, a truecase model

can be trained to predict what words, such as proper names, should be capitalized. This

model can be used to normalize the training data. Tokenization also helps normalize the

text, especially when there is extensive morphology (e.g., Japanese) or few encoded word

delimiters like spaces (e.g., Chinese, or Japanese again). Even English, with its relatively

low amount of inflectional morphology and use of spaces and punctuation between words,

can benefit from tokenization.

For bilingual word alignment, Giza++ (Och and Ney, 2003) is frequently used with

Moses, but other aligners, such as Anymalign (Lardilleux et al., 2012) and fast_align (Dyer

9The parameters I use for Anymalign are --timeout=57600 --weight.
10Anymalign works by continually selecting random subsets of the data until manually stopped or a
threshold is reached, so subsequent runs with the same settings will produce different alignments.
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et al., 2013), are also available. The word aligners themselves may require some parameters

to be tuned to improve performance. The aligners produce a phrase table, which assigns

forward and backward translation probabilities to bilingual n-gram pairs. The intersection

of forward and backward alignments tends to have higher precision and lower recall, and

the union of the two increases recall but lowers precision. The default method Moses uses,

grow-diag-final, starts with the intersection of forward and backward word alignments,

then adds additional points from the union of the forward and backward word alignments,

and finally adds alignment points for previously unaligned source or target tokens. I use

grow-diag-final-and, which is the same as grow-diag-final, except it only adds align-

ment points for unaligned tokens if both the source and target were previously unaligned.

These alignments are then used to get a lexical translation table and extract phrase pairs.

A lexicalized reordering model is a separately-built model for discounting phrase trans-

lations during decoding based on the amount or kind of deviation from a monotonic (i.e.,

word-for-word) translation. Languages with very divergent word order, such as Japanese and

English, can benefit from a more permissive reordering model. I use msd-bidirectional-fe,

which is a word-based model that allows monotone, swap, and discontinuous (msd) orienta-

tions for reordering, considers both the previous and next phrases (bidirectional), and is

conditioned on both the source and target languages (fe).

Finally, a target-side language model is trained so translation candidates can be weighted

by their naturalness in the target language. The language model is monolingual, so it can

be trained on potentially much more data than just the target side of the training bitexts.

In order to build a baseline system that’s comparable to my own, I use the same datasets

and tokenization for Japanese,11 and set the maximum sentence length to 70, the same as for

ACE 0.9.26. I use Moses version 4.0 with the Experiment Management System (EMS).12

The basic settings I use are listed in Table 9.2 and the full EMS configuration file is given in

11The English tokenization is done separately. The ERG uses its own REPP-based tokenizer (Dridan and
Oepen, 2012), while Moses uses its own tokenizer.perl.
12See http://www.statmt.org/moses/?n=FactoredTraining.EMS

http://www.statmt.org/moses/?n=FactoredTraining.EMS
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Parameter Value

Maximum Sentence Length 70

Language Model KenLM, order=5

Word Aligner MGiza

Alignment Symmetrization grow-diag-final-and

Lexicalized Reordering msd-bidirectional-fe

Max Phrase Length 5

Tuning MERT, nbest=100

Table 9.2: Basic settings for the moses baseline

Appendix A.1. These settings define a baseline Moses system that, while not fully optimized

for the task, should provide competitive and comparable results.

9.5 Haugereid and Bond Baseline

Haugereid and Bond (2011, 2012) built upon the JaEn core transfer grammar by automat-

ically extracting MRS transfer rule (MTR) instances from parallel corpora. The results of

their extraction are included with the JaEn grammar by default,13 but I reproduce their

extraction process using my training data in order to make the resulting system, the H&B

system, comparable to my experimental systems and to the Moses baseline.

Using the H&B templates (updated to current versions of Jacy and the ERG), the predi-

cate alignments (described in Section 9.3), and the bisem training data, I extract both single

rules, which have one predicate on the source side, and rules for multi-word expressions

(MWEs), which have more than one predicate on the source side.14 Without redoing the

13At https://github.com/delph-in/jaen
14Calling them multi-word expressions is perhaps a misnomer, because there is not necessarily a one-to-one
correspondence between predicates and realized words; i.e., a single rule could match more than one word,
and multiple predicates may match a single word.

https://github.com/delph-in/jaen
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extraction, this baseline would contain knowledge from sources that my systems could not

make use of, thus obscuring the differences between my systems and the baseline. By rerun-

ning the extraction process I also update rules that have become obsolete due to changes in

the underlying English and Japanese grammars.

The H&B method initially extracts a large number of rules, many of which may turn

out to be unhelpful, so the rules are filtered by their translation probability or their corpus

frequency. Without filtering, the transfer grammar may be too large to compile, as discussed

in Section 7.2, but even if it compiles the performance could suffer greatly. The extra rules

increase the search space for transfer, which can make timeouts more likely. Dispreferred

transfers can push the preferred ones past the result cutoff, which is further complicated

by the fact that ACE 0.9.26 does not do transfer reranking. In H&B, the single (i.e.,

one-to-N) transfer rules generally must have a forward translation probability of 0.1 and

the MWE rules must have 0.01, but there are also hard-coded thresholds for specific rule

templates. Haugereid and Bond decided these probability thresholds by manual inspection

of the extracted rules. In addition to the probability threshold, rules with a corpus frequency

of 1 are culled.15

After filtering, I extract 38,696 single rules and 15,018 MWE rules. The distribution of

these rules according to the number of source and target predicates that are specified in the

MTRs16 is shown in Table 9.3. Cells with a number (even 0) represent those for which a

template is defined. Single rules are by far the most numerous, and in general there are

more rules for the lower predicate counts. The higher the predicate count, the more specific

a hand-written template will be, and therefore fewer instances will match such templates.

15Haugereid and Bond (2012) uses both Giza++ and Anymalign alignments. In Anymalign, which I use for
H&B, the frequency is not the absolute corpus frequency, but the number of times it appears in randomly
selected subsets during the training procedure, so it may differ across runs.
16Unlike the counts for my systems in Tables 9.5 and 9.10, which are distributed by the number of
predicates the resulting transfer rules will match or insert, the H&B predicate counts do not consider
predicates defined in the transfer rule types; thus, the actual number of predicates affected may be higher
than the numbers used in Table 9.3. The difference is due to a limitation in the way the rules are encoded
for H&B.
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Table 9.3: Extracted H&B rule counts by specified predicate counts

Haugereid and Bond (2011, 2012) defined a set of templates for matching semantic pat-

terns and I minimally update and then use those templates for re-extracting transfer rules

from my datasets. The result is 38,696 single rules and 15,018 MWE rules, which I use to

build the H&B transfer grammar.

9.6 LPA: Bilingually-aligned Predicate Phrases

This first experimental system, called LPA, is an extension of Haugereid and Bond 2012 that

does not use rule templates but instead uses properties of the semantic graphs, as described

in Section 6.1. I use the alignments described in Section 9.3 and the bisem training data for

rule extraction.

9.6.1 Linearization and Extraction Parameters

When linearizing the predicates for alignment, I drop some quantifiers (as explained in

Section 5.7.1) as well as any other nodes with predicates listed in Table 9.4, as they are

generally inserted by the system and can be reinserted by the hand-written rules. During
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projection and extraction, I require the top nodes in the source and target subgraphs to have

the same variable type, and I limit the source:target subgraph order ratio to not exceed 1:3

or 3:1.17

Predicate Jacy ERG

udef_q ✓ ✓
pronoun_q ✓
number_q ✓
proper_q ✓
def_q ✓ ✓
_wa_d ✓
parg_d ✓
pron ✓ ✓
compound ✓ ✓
unknown ✓
unknown_v ✓
unknown_v_cop ✓
nominalization ✓ ✓

Table 9.4: Dropped predicates for linearization; checkmarks indi-
cate if the predicate is relevant for a grammar

The compound and nominalization predicates, which have the same form and function

in both the ERG and Jacy, are in fact useful to include in subgraph pairs but only if their

arguments are fully satisfied. If they are included in the linearization, the aligner may

find predicate phrase pairs that include compound or nominalization, but not all of their

arguments, so in response I treat them specially. They are dropped during linearization, but

17The order ratio prevents 1× 4, 1× 5, 1× 6, 4× 1, 5× 1, and 6× 1 orders.
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may be automatically inserted during extraction if all of their arguments are present in a

predicate phrase pair, as described in Section 6.1.2.

9.6.2 Subgraph Extraction and Filtering

The initial extraction obtains 749,089 paired subgraphs. I filter out those that have a source

or target graph order greater than 6, an Anymalign frequency of 1, or a forward translation

probability of less than 0.1. Note that unlike H&B I do not use different probability thresh-

olds for different graph sizes or patterns. I also remove pairs where the target side includes

unknowns, i.e., predicates not included in the target grammar’s lexicon, as they would not

lead to any realizations (as discussed in Section 8.4). After these filtering steps, 359,407

pairs remain.

Table 9.5 shows how many unique rules were extracted from the training data. The rows

correspond to the order of the source subgraphs and the columns correspond to the order of

the target subgraphs. As with H&B, there are many more single rules than any other order

pairing and the number of single rules is similar to that of H&B. LPA, however, extracts

many more MWE rules of various sizes, with a clear trend along the diagonal. The large

number of extracted rules is encouraging for improving transfer coverage, but the challenge

is to make sure that only high-quality rules are used so that the bad ones do not hide the

good results and that the enlarged search space does not lead to increased timeouts. I apply

the strategy described in Section 7.2.2 for filtering the rules.

Table 9.6 shows the counts of the isomorphic rules only.18 As the isomorphism constraint

(see Section 5.3.2) requires the graphs on both sides to have the same order, cells in Table 9.6

correspond to the diagonal of Table 9.5, e.g., for 2 × 2 order 16,628 of 26,353 rules were

isomorphic.

18The only single (one-to-one) rule that was not isomorphic mapped a regular nominal predicate to one
with a constant argument; constant arguments are node properties (thus it does not introduce a second
node) but their presence is considered for isomorphism comparisons.
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Table 9.5: Extracted LPA rule counts by subgraph order

9.6.3 System Configurations

I select subsets of the bilingual subgraph pairs in order to create experiments for LPA. Con-

sider X to be the transfer rule store, i.e., the set of all bilingual subgraph pairs ⟨gs, gt⟩

extracted by predicate phrase projection. I define Eq. (9.1) to select pairs where the sub-

graphs have a specified source order between h and i and target order between j and k.19

Eq. (9.1) is in set-builder notation and is interpreted as: the set of all pairs ⟨gs, gt⟩ in X

such that the size of the set of vertices in graph gs is greater than or equal to h and less

than or equal to i, and the size of the set of vertices in graph gt is greater than or equal to

j and less than or equal to k. I then define Eqs. (9.2) to (9.4) as variations of Eq. (9.1) that

allow a source or target range to be a single number meaning a graph order of exactly that

number. For example, X1,1 is the set of one-to-one pairs, X2,1−2 is the set of pairs that have

19V is a function that returns the set of nodes, or vertices, thus |V (g)| is the order of the graph g.
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Table 9.6: Extracted LPA isomorphic rule counts by subgraph order

2 predicates on the source side and between 1 and 2 predicates on the target sidel, etc.

Xh–i,j–k = {⟨gs, gt⟩ ∈ X : (h ≤ |V (gs)| ≤ i) and (j ≤ |V (gt)| ≤ k)} (9.1)

Xi,j–k = Xi–i,j–k (9.2)

Xh–i,j = Xh–i,j–j (9.3)

Xi,j = Xi–i,j–j (9.4)

Using these selectors, I define four sets of experiment configurations (S, M, P, and O)

for testing the performance of my rule extraction and filtering. The first two sets (S and M)

are augmented with partial H&B rules in order to separately evaluate the contribution of

my single and MWE rules, respectively, from the H&B baseline. Of these two sets, the first

consists of three experiments, S1–S3, which use my single rules, i.e., a source graph size of 1

and a target graph size from 1 to 3, along with H&B’s MWE rules. The second set consists

of five experiments, M2–M6, one for each maximum MWE graph size from 2 to 6, using my
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Extracted Rule Sets Extracted Rule Counts

Name Single MWE All TC-dev

LPA-S1 X1,1 H&B 72,937 21,638a

LPA-S2 X1,1–2 H&B 84,239 23,885a

LPA-S3 X1,1–3 H&B 96,605 24,709a

LPA-M2 H&B X2,1–2 98,160 64,521b

LPA-M3 H&B X2–3,1–3 210,659 106,591b

LPA-M4 H&B X2–4,1–4 298,878 148,125b

LPA-M5 H&B X2–5,1–5 394,060 186,732b

LPA-M6 H&B X2–6,1–6 470,761 219,377b

LPA-P2 X1,1–2 X2,1–2 128,685 34,692

LPA-P3 X1,1–3 X2–3,1–3 253,550 77,586

LPA-P4 X1,1–4 X2–4,1–4 341,772 119,120

LPA-P5 X1,1–5 X2–5,1–5 436,954 157,727

LPA-P6 X1,1–6 X2–6,1–6 513,655 190,372

LPA-O2 X1,1 Iso(X2,2) 82,778 18,776

LPA-O3 X1,1 Iso(X2–3,2–3) 101,588 22,771

LPA-O4 X1,1 Iso(X2–4,2–4) 104,157 23,754

LPA-O5 X1,1 Iso(X2–5,2–5) 106,121 24,125

LPA-O6 X1,1 Iso(X2–6,2–6) 106,449 24,251
a Only single rules were refined; H&B MWE rules remained constant.
b Only MWE rules were refined; H&B single rules remained constant.

Table 9.7: Experimental configurations for LPA
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MWE rule and H&B’s single rules. The second two sets of experiments use my LPA rules

only; P2–P6 use all available rules, and O2–O6 restrict the MWE rules to isomorphic MRS

subgraphs. The O set uses the Iso() function, which performs a structural isomorphism

comparsion as defined in Section 5.3.2, on the selected rules so that only isomorphic pairs

are included. These configurations are listed in Table 9.7 along with the total number of

rule counts and the number of rules relevant to the development data of the Tanaka Corpus

(Tanaka, 2001).20

9.6.4 Summary

LPA is a method of transfer rule extraction that is similar to the H&B method but operates

without rule templates. Not being constrained to a limited number of hand-written templates

allows it to extract many more MWE rules than H&B, however it likely has more noise as

the rule filtering is less strict (considering the templates as a kind of filter). The quantity

of extracted rules enables me to experiment with different system configurations, which I do

on the basis of source and target graph order and isomorphism of the paired graphs.

9.7 SGA: High-frequency Coincident Subgraphs

The second experimental system does not rely on linearized predicates but instead aligns

extracted subgraphs directly, as described in Section 6.2. I use the bisem training data

described in Section 9.3 for subgraph extraction. This method initially yields a far greater

number of subgraph pairs than LPA, so I must apply more aggressive filtering in order to

remove the noise and extract a reasonable number of aligned subgraph pairs. For example,

(22) is an example sentence (and its translation) from the Tanaka Corpus and Figs. 9.1

and 9.2 show some of the enumerated subgraph pairs where the single node for 海王星
Kaiousei “Neptune” is the source subgraph. Fig. 9.1 is the correct subgraph pairing that is

20Note that the S1–S3 and M2–M6 sets use H&B MTR rules which, being in the MTR format, are not
compatible with the method I have for selecting corpus-relevant subgraph pairs (see Section 7.2.1), so the
values of the TC-dev column for those sets are not comparable with those for P2–P6 and O2–O6.
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enumerated by SGA but there are many incorrect pairings that would also be enumerated,

as shown by the partial list in Fig. 9.2.

(22) 海王星
Kaiousei
Neptune

は
-ha
-top

太陽系
taiyoukei
solar.system

の
-no
-gen

８
hachi
8

番⽬
-banme
-ord

の
-no
-adn

惑星
wakusei
planet

だ
da
cop

“Neptune is the eighth planet of the solar system.” [jpn]

(x0 / named
:carg "kaiousei_1")

(x0 / named
:carg "Neptune")

Figure 9.1: Correct subgraph pairing for 海王星 Kaiousei “Neptune”

(x0 / named
:carg "kaiousei_1") (x0 / _planet_n_1)

(x0 / named
:carg "kaiousei_1")

(x0 / _planet_n_1
:ARG1-EQ-of (e1 / ord

:carg "8")
:ARG1-EQ-of (e2 / _of_p)
:RSTR-H-of (u4 / _the_q))

(x0 / named
:carg "kaiousei_1")

(x0 / _system_n_of
:ARG1-EQ-of (e1 / _solar_a_1)
:RSTR-H-of (u2 / _the_q))

Figure 9.2: Incorrect subgraph pairings for 海王星 Kaiousei “Neptune”

In this section I will explain how I use prefiltering to exclude subgraph pairs based on

graphical patterns or properties, a weighted-ϕ2 filter (discussed in Section 6.2.4) to exclude

pairs that are not likely to be translationally equivalent (such as those in Fig. 9.2), and a
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symmetric translation probability filter to further reduce the size of the model and to inform

a partial ordering of MTRs in the resulting transfer grammars.

9.7.1 Enumeration Parameters

This method requires filtering at several stages. In the subgraph enumeration stage, I set

the depth limit to 3 (where a depth of 0 is a single node) and drop nodes with predicates

matching those in Table 9.8. When pairing the enumerated subgraphs, I require that the

type of the top nodes is the same. I prefilter any pairs with a source or target subgraph

matching a corresponding prefilter pattern as defined in Table 9.9. The prefilter patterns

were chosen by looking at the most common subgraphs initially extracted and selecting those

that did not appear useful.

Predicate Jacy ERG

udef_q ✓ ✓
pronoun_q ✓
number_q ✓
proper_q ✓
def_q ✓ ✓
_wa_d ✓
parg_d ✓

Table 9.8: Dropped predicates for enumeration; checkmarks indi-
cate if the predicate is relevant for a grammar

After building the statistical model, I keep single rules (those with a source order of

1) with a weighted-ϕ2 value of 0.01, and MWE rules with a weighted-ϕ2 value of 0.1. I

then calculate the forward and backward translation probabilities on the remaining sub-

graph pairs and, for each group of pairs sharing the same source subgraph, I keep the top
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Jacy ERG Notes

(e0 / unknown_v With or without relations

(* / _and_c) Any variable type

(* / _or_c)

(* / _but_c)

(* / implicit_conj)

(x0 / pron) (x0 / pron) Don’t pair solitary pronouns

(e* / compound) (e* / compound) Missing at least one argument

(x* / nominalization) (x* / nominalization)

(e* / _no_p) (e* / _of_p)

(e* / _ni_p) (e* / _in_p)

(e* / _de_p) (e* / poss)

(e* / coord_c) (e* / _for_p)

(e* / _to_p_with) (e* / appos)

(e* / _to_p_and) (e* / _to_p)

(e* / _ya_c) (e* / _with_p)

(e* / _toshite_p) (e* / _on_p)

(e* / _as_p)

(e* / _from_p)

(e* / _at_p)

(e* / _after_p)

Table 9.9: Subgraph prefilters
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5 based on the symmetric translation probability, after filtering out pairs where the target

has unknown nodes. Note that the weighted-ϕ2 filter has an absolute threshold, designed to

exclude pairings that likely are not translationally equivalent. In contrast, the symmetric

translation probability filter’s purpose is the reduce the size of the model instead of deciding

what is translationally equivalent, so it uses an relative threshold: it keeps the top 5 per

group regardless of what the absolute value of the probability is. The symmetric translation

probability is also used to provide a partial ordering of rules in the transfer grammar, along

with other criteria, such as graph order (see Section 7.2.2).

9.7.2 Subgraph Enumeration, Pairing, and Filtering

The intial enumeration, pairing, and prefiltering of SGA subgraphs yields 28,387,278 sub-

graph pairs. This number is all observed pairs and not just those that are likely translation-

ally equivalent, so I expect the number to drop substantially when I apply the secondary

filters. The subgraph enumeration method (described in Section 6.2) limits the depth of the

subgraphs, but not their order. The highest source and target orders are 16 and 18, respec-

tively, but those with a source or target order over 6 are relatively few—just 608,222 of the

28,387,278 (2.1%)—leaving 27,779,056 subgraphs with source and target orders between 1

and 6.

Table 9.10 shows the distribution of unique subgraph pairs for source and target orders

between 1 and 6. As with LPA, the 1× 1 cell has the most pairs. Unlike LPA, however, the

trend does not follow the diagonal, but is instead radial from the 1× 1 cell. This stands to

reason, as single nodes are repeated across a corpus more often than any larger subgraphs.

One cell does not follow this pattern, where the 1× 3 (source order is 1 and the target is 3)

has more pairs than the 1× 2, and this is likely due to the prefiltering, e.g., because many of

the predicates in the prefilter patterns have binary arity, so subgraphs including them that

would not be filtered have an order of 3 or greater. Also note that there is a strong tendency

for subgraphs that have order 3, which is likely due to there being many binary predications

(e.g., transitive verbs, compounds, coordination, prepositions, etc.). See Section 11.3 for
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some discussion of the distribution of different subgraph topologies.
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Table 9.10: SGA subgraph pair counts by subgraph order

As discussed in Section 6.2.4, I use a weighted ϕ2 filter for ranking subgraph pairs.

In order to motivate that choice, I first show pairs filtered by the unweighted ϕ2 score in

Table 9.11a. The numbers represented in that table were filtered keeping single rules with a

ϕ2 threshold of 0.01 and MWE rules with ϕ2 threshold of 0.1, after which I calculated forward

and backward translation probabilities, grouped rules by the source subgraph, and kept the

top 5 per group based on their symmetric translation probabilities. The total number of

remaining pairs is 1,560,131; a reduction of 94.4%. Note that the number of 1× 1 rules has

been greatly reduced relative to other cells, and the radial dispersion now centers around the

3× 3 cell.

Table 9.11b shows the distribution of subgraph pairs filtered as before but using the

weighted ϕ2 ranking. Translation probabilities were calculated after the weighted ϕ2 filtering

and used for the symmetric translation probabilty filter. The number of remaining pairs is

977,532; a reduction of 96.5% from the original amount. The weighting skews the distribution
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(a) SGA subgraph pair counts, filtered by ϕ2
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(b) SGA subgraph pair counts, filtered by weighted-ϕ2
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to follow the diagonal more closely, which is what I want, as it is easier to do bilingual variable

binding (see Section 7.3.2) when the subgraphs are closer in size and shape. Note that despite

the overall reduction of subgraph pairs, some cells have increased their counts compared to

the normal ϕ2 filtering. This is because the filtering based on the symmetric translation

probability happens after the weighted ϕ2 filtering, which changes the probabilistic model,

thus resulting in more source subgraphs that have at least 5 pairs. The counts of isomorphic

subgraph pairs is given in Table 9.12.
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Table 9.12: Extracted SGA isomorphic subgraph pair counts

9.7.3 System Configurations

Just as with LPA, I select subsets of the extracted subgraph pairs in order to create exper-

iments. The experimental configurations I create for SGA follow the same pattern as LPA,

and I use the same selectors (Eqs. (9.1) to (9.4)) for dividing up the pairs by graph order.

The difference is that I’m using the pairs extracted for SGA, which, unlike LPA, has pairs

for the off-diagonal corners, thus allowing me to define a full 6 configurations of the S-series.

Table 9.13 lists the configurations used for SGA with the total number of extracted pairs

and the subset that is relevant for the Tanaka Corpus development set.
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Extracted Rule Sets Extracted Rule Counts

Name Single MWE All TC-dev

SGA-S1 X1,1 H&B 36,402 17,280a

SGA-S2 X1,1–2 H&B 76,602 21,209a

SGA-S3 X1,1–3 H&B 141,882 26,053a

SGA-S4 X1,1–4 H&B 184,757 29,448a

SGA-S5 X1,1–5 H&B 202,041 30,609a

SGA-S6 X1,1–6 H&B 211,217 31,274a

SGA-M2 H&B X2,1–2 110,050 60,589b

SGA-M3 H&B X2–3,1–3 571,733 214,317b

SGA-M4 H&B X2–4,1–4 999,674 353,683b

SGA-M5 H&B X2–5,1–5 1,264,748 435,613b

SGA-M6 H&B X2–6,1–6 1,402,628 476,443b

SGA-P2 X1,1–2 X2,1–2 132,938 28,084

SGA-P3 X1,1–3 X2–3,1–3 659,901 186,656

SGA-P4 X1,1–4 X2–4,1–4 1,130,717 329,417

SGA-P5 X1,1–5 X2–5,1–5 1,413,075 412,508

SGA-P6 X1,1–6 X2–6,1–6 1,560,131 454,003

SGA-O2 X1,1 iso(X2,2) 53,091 12,096

SGA-O3 X1,1 iso(X2–3,2–3) 96,315 23,584

SGA-O4 X1,1 iso(X2–4,2–4) 102,796 24,849

SGA-O5 X1,1 iso(X2–5,2–5) 104,030 25,144

SGA-O6 X1,1 iso(X2–6,2–6) 104,401 25,169
a Only single rules were refined; H&B MWE rules remained constant.
b Only MWE rules were refined; H&B single rules remained constant.

Table 9.13: Experimental configurations for SGA
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9.7.4 Summary

SGA builds its own statistical model over enumerated subgraphs, so it initially considers

many times more subgraph pairs than LPA. Through multiple stages of aggressive filtering

(Sections 9.7.1 and 9.7.2) I get the number of pairs down roughly to the same level as with

LPA. For ease of comparison, I create a series of experimental configurations similar to that

of LPA but for SGA I am also able to do the full set of S configurations.

9.8 Chapter Summary

I have described two methods (Sections 9.6 and 9.7) for augmenting transfer grammars for

machine translation, their parameters for construction (Sections 9.6.1 and 9.7.1), and a series

of experimental configurations for evaluating their performance (Sections 9.6.3 and 9.7.3).

The Moses baseline (Section 9.4) shows how a popular alternative translation paradigm

performs, while the H&B baseline (Section 9.5) exists as the prior state of the art in the same

transfer-based paradigm. The experimental configurations are designed to show, by their

relative peformance, if my extracted MTRs are increasing transfer coverage or improving

evaluation scores compared to those of the H&B baseline system. The Oracle evaluation

method (Section 9.1) will show the upper bound of my systems’ performance on the BLEU

metric, which is the primary means of comparing to the Moses baseline. Once a high-

performing system is identified, I ask human evaluators to select the best translations from

either my system or the Moses baseline. In Chapter 10, I show the results of my experiments

and in Chapter 11 I analyze those results.
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Chapter 10

RESULTS

In Chapter 9 I described the baseline and experimental systems I use to evaluate my

methodolgy and in this chapter I report the results of those experiments. For the transfer-

based systems I report the transfer and generation coverage.1 For all systems I report the

BLEU scores over all outputs. For the transfer-based systems I report separate BLEU scores

for the First and Oracle selection methods, as discussed in Section 4.6.2 The outputs of

each transfer-based system might cover the same input items as the other systems, so these

BLEU scores are not comparable to each other and are only to be used as a rough estimate of

an individual system’s or configuration’s quality. I therefore take the intersective subset

of each experimental system (i.e., all LPA configurations plus the baselines, then all SGA

configurations plus the baselines), for which the evaluation metrics are comparable. I com-

pute the BLEU, NIST, and METEOR metrics over these subsets, separating the First and

Oracle selections for transfer-based systems, as before. To help avoid confusion, I call the

BLEU scores reported over all outputs All-BLEU (in Section 10.1 I also similarly report

All-NIST and All-METEOR on the baseline systems, since I do not compare the baselines

to each other with intersective evaluation), while for the intersective subsets I just call the

metrics by their original names. Note that all systems, including Moses and H&B, will re-

port slightly different numbers for the different subsets described above (i.e., the full and

intersective subsets for both LPA and SGA).

In Section 10.1 I show the coverage for H&B and evaluation scores for both H&B and

1Transfer may yield partially trasferred MRSs for most items but I ignore those items when calculating
coverage as they cannot be used in generation.
2While Moses has the option to return the top-n translations, I do not explore this space in my evaluation,

and I only report the top-1 results.
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Moses over the development data. Section 10.2 has the coverage and evaluation scores for

LPA, and Section 10.3 has the same for SGA, both over development data. In Section 10.4 I

select the best configuration from LPA and SGA for comparison3 and evaluate using the test

data. Examples of translations from the baselines and from my experimental systems over

the development data are given in Section 10.5. Discussion of the results and error analysis

is covered in Chapter 11.

10.1 Baseline Development Results

The Moses baseline system does not use the transfer pipeline and it is able to provide a

translation for every sentence given to it, so there are no coverage numbers to report. The

H&B system, however, does have imperfect coverage, so I report the pipeline transfer and

generation coverage in Table 10.1. A component’s relative coverage in Table 10.1 is the

proportion of successfully processed items from the inputs to the component, while the

absolute coverage is the proportion of successfully processed items from all pipeline inputs.

For example, there are 4,500 total items in the Tanaka development set, and 3,572 (79.4%)

of the source side items have at least one parse, so 79.4% is the upper bound of the absolute

coverage. Of the parsed items, 995 have at least one transfer, which is 27.9% of 3,572

and 22.1% of 4,500. The numbers for generation are computed similarly, with 995 as the

denominator for the relative coverage. Since generation is the last step in the pipeline that

can lose items,4 its absolute coverage is also the end-to-end translation coverage. This means

that only 13.0% of the 4,500 items, or 585 items, resulted in a translation.

Table 10.2 shows the BLEU, NIST, and METEOR scores over all 4,500 results for the

Moses baseline system. The H&B results, using both First and Oracle selection for all results,

are shown in Table 10.3. The BLEU score reported for Moses, 21.81, is reasonable for the

relatively small amount of training data for an SMT system but this score will change as it is

3The best configurations for comparison are not necessarily the ones with the highest scores; see Sec-
tion 10.4 for more details.
4The last step, selection, just picks one of the available realizations in a hypothesis set.
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Transfer Generation

Relative Absolute Relative Absolute

27.9 22.1 58.9 13.0

Table 10.1: H&B transfer and generation coverage for the development set

computed over different subsets of the data in comparison to the output of my systems. For

H&B, note that there is a very large difference between the First and Oracle in BLEU scores

but a relatively smaller difference for METEOR, which shows the sensitivity of BLEU to

word order, synonyms, and morphological variation. The Oracle BLEU score of 24.09 should

not be compared with the BLEU of Moses, as they are for different subsets of the data and

the items for which H&B had coverage may contain simpler or cleaner data. Comparable

scores will be given when showing LPA and SGA results in the following sections.

BLEU NIST METEOR

21.81 6.04 27.42

Table 10.2: Moses evaluation results over the development data

All-BLEU All-NIST All-METEOR

First Oracle First Oracle First Oracle

10.52 24.09 3.85 5.45 26.52 31.47

Table 10.3: H&B evaluation results over the development data
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10.2 LPA Development Results

There are 18 configurations for LPA. Tables with numerical values are useful for fine-grained

comparison but they are not ideal for viewing the trends across all configurations. Therefore I

present in Fig. 10.1 a visualization of the coverage and BLEU scores for all configurations and

tables of results for the top configurations in Tables 10.4 and 10.5. The top configurations

are the ones from each set with the highest intersective Oracle BLEU scores.
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Figure 10.1: Coverage, All-BLEU, and Intersective-BLEU results for all LPA configurations

In Fig. 10.1 the different configuration set are grouped together so the trends for increasing

graph order can be more easily seen. For each configuration there are two overlapping bars.

The taller, lighter-colored bars are the absolute transfer coverage, while the shorter, darker

bars are absolute generation coverage. The proportion of the lighter bars occupied by the

darker bars is the relative generation coverage.5 Note that the y-axis for coverage is given

5The relative transfer coverage is not shown, but the parsing coverage (79.4%) is constant for all systems,
so the differences between configurations would be the same.
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on the left side, ranging from 0% to 50%.6 Overlaid on top of the coverage chart is a line

plot of the BLEU scores, using triangle markers for First and circles for Oracle selection.

Filled-in triangles and circles are used for the scores on the intersection of all configurations.

The y-axis for BLEU scores is on the right side, ranging from 0.00 to 30.00.

% Coverage

Transfer Generation All-BLEU

System Rel Abs Rel Abs First Oracle

H&B 27.9 22.1 58.9 13.0 10.52 24.09

LPA-S2 45.0 35.7 45.4 16.2 11.45 23.81

LPA-M2 35.7 28.3 39.5 11.2 11.21 25.46

LPA-P2 49.8 39.5 31.0 12.2 11.26 23.20

LPA-O2 41.6 33.0 42.8 14.2 11.14 23.08

Table 10.4: Coverage and All-BLEU for top LPA configurations

The coverage and All-BLEU scores are given in Table 10.4 along with the H&B values,

for comparison, copied from Section 10.1. The evaluation metrics—BLEU, NIST, and ME-

TEOR—on the intersection of all configurations is given in Table 10.5. For both tables, I

show in bold the value of the best configuration of my systems. If a baseline has a better

value, I also show in bold the best performing baseline (H&B or Moses). I do not bold the

highest numbers in the All-BLEU columns as the numbers are not comparable; instead see

the intersective BLEU scores in the Table 10.5.

6Reducing the upper bound to 50% makes the differences more pronounced.
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BLEU NIST METEOR

System First Oracle First Oracle First Oracle

Moses 30.13 5.21 31.16

H&B 13.92 28.18 3.56 5.03 26.70 32.09

LPA-S2 14.66 29.77 3.68 5.07 27.33 32.54

LPA-M2 13.71 28.54 3.59 5.00 26.97 31.88

LPA-P2 14.06 28.71 3.66 4.97 27.29 32.22

LPA-O2 14.10 29.16 3.67 5.02 27.38 32.45

Table 10.5: Evaluation results for top LPA configurations over the
intersection of development translations

10.3 SGA Development Results

There are 21 configurations for SGA, so, similar to LPA, I present the results, along with

the H&B results, in a bar chart for coverage overlaid with line plots for BLEU scores. This

chart is shown in Fig. 10.2. Aside from the three additional S systems, the scales of the axes

are the same as in Fig. 10.1. I then show the values of the top configurations, as before, in

Tables 10.6 and 10.7.

10.4 Combined Test Results

In Sections 10.2 and 10.3 I compared configurations from my two systems to the baselines,

but I did not compare them to each other, nor did I use test data. In this section, I take

the best configuration for comparison from each of LPA and SGA, then compare them to

each other and to the baselines over the test data. By best, I do not exactly mean the one

with the absolute highest intersective BLEU score, which for both LPA and SGA is one

of the configurations that combines my transfer rules with those of H&B. Rather, I choose
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Figure 10.2: Coverage, All-BLEU, and Intersective-BLEU results for all SGA configurations

% Coverage

Transfer Generation All-BLEU

System Rel Abs Rel Abs First Oracle

H&B 27.9 22.1 58.9 13.0 10.52 24.09

SGA-S2 40.2 31.9 38.4 12.3 10.56 23.94

SGA-M2 30.9 24.5 46.7 11.4 10.76 23.83

SGA-P2 43.4 34.4 28.9 10.0 10.24 23.86

SGA-O5 32.6 25.9 41.4 10.7 11.15 25.49

Table 10.6: Coverage and All-BLEU for top SGA configurations
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BLEU NIST METEOR

System First Oracle First Oracle First Oracle

Moses 31.12 5.48 32.84

H&B 13.08 29.11 3.61 5.22 26.63 32.44

SGA-S2 12.16 28.16 3.53 5.04 26.34 32.01

SGA-M2 13.23 28.56 3.63 5.21 26.76 32.64

SGA-P2 12.20 27.33 3.52 4.98 26.55 31.89

SGA-O5 12.30 27.57 3.54 5.01 26.50 31.98

Table 10.7: Evaluation results for top SGA configurations over the
intersection of development translations

one of the configurations that use only my rules (that is, a P or O configuration), and from

those I choose the one with the highest intersective Oracle BLEU scores. The first selected

configuration, LPA-O2, is only 0.09 points below the top combined system (LPA-S2), and

it beats both baselines. The second, SGA-O5, is 0.66 lower than the top combined system

(LPA-M2), and it didn’t beat either baseline.

The coverage of the test systems is given in Table 10.8. The transfer coverage of the

LPA-O2 system is notable as being the only one to exceed 50% (both relative and abso-

lute). Besides that anomaly, the other two (H&B and SGA-O5) behaved similarly to the

development data.

Table 10.9 shows the evaluation scores over the intersection of covered test items. This

table contains the second surprise, which is that the SGA system beat the LPA system in all

metrics (although it did not beat either baseline in any metric). In addition to the First and

Oracle scores for BLEU, NIST, and METEOR, I also asked human annotators to select their

preferred translation from the outputs of Moses and SGA-O5. As explained in Section 9.1,

the annotators were asked to select the most useful translation, not necessarily the most
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% Coverage

Transfer Generation All-BLEU

System Rel Abs Rel Abs First Oracle

H&B 27.9 21.8 57.6 12.6 9.36 23.97

LPA-O2 65.8 51.5 35.8 18.4 8.27 18.13

SGA-05 31.5 24.6 43.0 10.6 10.71 25.56

Table 10.8: Coverage and All-BLEU for testing configurations

fluent, and a third option was allowed for cases where the outputs of both systems were

equally good or bad.7 The results show that the annotators preferred Moses 42.9% of the

time and my system 36.5% of the time, with the remaining 20.6% having no preference. In

total I had four annotators who are all native speakers of English and proficient in Japanese.

Randolph’s free-marginal Kappa (Randolph, 2005)8 gives annotator agreement of 0.50. This

value shows some agreement, but it is not high enough to generally be considered reliable.

Among the individual annotators, preference for my system ranged from 32.4% to 41.2%, for

the Moses system it ranged from 36.3% to 49.0%, and for no preference it ranged from 9.8%

to 30.4%. Bond et al. (2011) previously showed human evaluation preferring their JaEn-

based system 52.8%, compared to 47.3% for Moses,9 and I suspect that many of the issues

causing my system to fare relatively poorly on human annotation is the lack of ranking

and post-transfer clean-up that Bond et al. (2011) did (see Section 12.2 for my proposed

improvements to my system).

7Note that I excluded items where the output of both items was identical.
8An alternative to Fleiss’ Kappa which improves on the situation where annotators are not required to

assign a fixed number of items to certain categories. Values range from -1.0 for perfect disagreement above
chance, 0.0 for no agreement above chance, and 1.0 for perfect agreement above chance.
9The extra 0.1 is rounding error; they also assigned half-points to both systems when annotators selected

no preference.
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BLEU NIST METEOR

System First Oracle First Oracle First Oracle Human

Moses 35.05 5.95 35.80 42.9%

H&B 13.12 30.40 3.83 5.56 29.74 35.77 –

LPA-O2 11.68 24.86 3.48 4.94 28.26 32.72 –

SGA-O5 12.58 29.74 3.80 5.47 29.31 34.83 36.5%

Table 10.9: Evaluation results over the intersection of test translations

10.5 Translation Examples

In this section I will present several examples of translations over the development data. Each

table below contains the source Japanese sentence, the reference English sentence, then the

translations from Moses, H&B, and various configurations of my two experimental systems.

Fig. 10.3 shows the translations from the top configuration in each set of LPA. Fig. 10.4

similarly shows translations from the top configurations of SGA. Fig. 10.5 uses the systems

I used for evaluating the test data in Section 10.4. Discussion of these and other results will

be given in Chapter 11.

Japanese ジムは鍵を回した。
Reference Jim turned the key in the lock.
Moses Jim pass me the key.
H&B Jim turned the key.
LPA-S2 Jim passed on the key to oneself.
LPA-M2 Jim turned the key.
LPA-P2 Jim passed on the key to myself.
LPA-O2 Jim passed on the key to yourselves.

Figure 10.3: Oracle Translations for the top configurations of LPA
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Japanese 彼⼥は約束を破らない。
Reference She is sincere in her promise.
Moses She never breaks his promise.
H&B She does not defeat promise.
SGA-S2 She does not break her signing off.
SGA-M2 She never breaks promise.
SGA-P2 She never breaks her signing off.
SGA-O2 She never breaks her signing off.

Figure 10.4: Oracle Translations for the top configurations of SGA

Japanese そのネコは茂みの影に隠れていた。
Reference The cat lay hidden behind the bushes.
Moses The cat was hiding behind a bush.
H&B Hiding away that cat for the bush shadow.
LPA-O2 The cat was hiding at the bush shadow.
SGA-O5 The tabby was hiding at the bush shadows.

Japanese 彼はテレビのニュースキャスターとして働いている。
Reference He works as a newscaster in television.
Moses He worked as a tv ニュースキャスター.
H&B He is working as a television anchorman.
LPA-O2 He is working as anchormans on a television.
SGA-O5 He is working as a television anchorman.

Figure 10.5: Translations from LPA-O2 and SGA-O5
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10.6 Chapter Summary

This chapter presented the results of the experiments described in Chapter 9. Section 10.1

reported the coverage and translation quality estimates for the baseline systems over the

development data. Section 10.2 gave an overview of the coverage and quality estimates for

all configurations of LPA over the development data, as well as quality estimates over the

intersection of the configurations’ outputs and those of the baseline systems, which resulted

in more comparable scores. Similar numbers and comparisons were reported for SGA in

Section 10.3. In Section 10.4 I report the results of running the baselines and the top

configurations from LPA and SGA over the test data and provide a comparison between

both baselines and both of my systems. Finally in Section 10.5 I provided some example

translations for a variety of configurations. In Chapter 11 I will analyze these results and do

error analysis over some system outputs.
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Chapter 11

ANALYSIS

In this chapter I analyze the results reported in Chapter 10 and perform error analysis. I

begin in Section 11.1 by comparing translation outputs across configurations. In Section 11.2

I look into the correlation of automatic quality estimates (e.g., BLEU and METEOR) with

transfer and generation coverage (Section 11.2.1), the differences and trends of the quality

estimates across configurations (Section 11.2.2), and the stability of the quality estimates

over First- and Oracle-selection for LPA and SGA. Section 11.3 investigates the combina-

torics and empirical prevalence of possible subgraph topologies and reasons about how they

relate to the creation of high-quality transfer rules. In Section 11.4 I examine the relation-

ship between subgraph properties and ill-formed semantic outputs. Section 11.5 looks at

the performance of transfer and generation in terms of the amount of duplicate transfers,

timeouts, invalid lexical material, and other metrics or problems. In Section 11.6 I examine

individual translation outputs and look for the causes of their errors.

11.1 Translation Analysis

Comparing the output of the systems to each other directly can be informative. In this

section, I will count how many times the systems gave the same output (i.e., overlap) and

compare instances where they do not.

Fig. 11.1 shows for LPA (gold) and SGA (purple), for First-selection (lighter shade)

and Oracle-selection (darker shade), the overlap1 with H&B (marked with circles) and each

system’s most-common translation (MCT; marked with diamonds).2 The MCT for a system

1For Figs. 11.1 and 11.2 I normalize the translations by downcasing and, for Moses, detokenizing and
adding . as the default sentence-final punctuation if there is none already.
2The most-common translation is system-specific and does not consider the baseline translations.
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LPA-First=H&B LPA-Oracle=H&B LPA-First=MCT LPA-Oracle=MCT
SGA-First=H&B SGA-Oracle=H&B SGA-First=MCT SGA-Oracle=MCT
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Figure 11.1: LPA and SGA overlap with H&B and the most common translations

(i.e., for LPA or SGA) is the most commonly selected translation for an item across all

experimental configurations and this metric is the proportion of items in a configuration

that overlap with their MCT. Note the numbers are counted over the intersection of the

development data and that the scale begins at 40% to emphasize differences.

An increase of overlap in Fig. 11.1 is interpreted as a decrease of variability. It is neither

good nor bad for systems to have high overlap, although such low variability could imply

there are untapped MTRs in the transfer grammars or possibly that the grammars themselves

are inexpressive. From First to Oracle selection there is a decrease of variability, except for

P2 and the O2–O6 set in LPA. First selection is influenced by the relative order of the

transfers sent to generation, but Oracle selection sorts all translations according to a single

metric—their BLEU score—so it makes sense that Oracle translations have more overlap.

The M and P sets exhibit greater variability than S and O, which is likely due to their
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large number of relatively unconstrained MWE rules. In contrast, S’s MWE rules (from

H&B) are templatic and O’s are structurally constrained to be isomorphic. The P and

O sets have less overlap with the H&B outputs, as they do not share any H&B rule sets

(although it is certainly possible for them to have acquired equivalent rules). Besides the M

set, all configurations produce the same translation as most other configurations, both with

First and Oracle selection, for at least 80% of their inputs, and for most of those its even

over 90%, nearing 100% for the O set. The M set is particular in having more overlap with

H&B than with its own MCT, and this is not true for the S set. Overlap with H&B and

overlap with MCT are not mutually exclusive—the H&B translation can also be the most

common translation for an experimental system—but they are not independent variables. If

configurations within a system, such as those in the S, P, and O sets, have high overlap with

MCT and relatively lower overlap with H&B, then other configurations in the same system,

such as those in the M set, with high H&B overlap would be expected to have relatively lower

MCT overlap, as the MCT is the most common across all configurations. Considering that

the S, P, and O sets all share my single rules and their outputs look like each other’s—and

that the M set shares its single rules with H&B and its outputs look more like H&B’s—I

can conclude that, for the current iteration of my system, the single rules are important for

producing translations characteristic of a particular rule extraction methodology.

Fig. 11.2 plots the overlap of LPA outputs on SGA’s MCT and vice versa. This chart

shows how similar their outputs are to each other, rather than to the H&B baseline or their

own MCTs. Mostly it is stable around 70%, but the M set shows significantly less overlap.

This finding reinforces the claim that the single rules in my systems have more bearing on

the translation outputs than the MWEs. This claim suggests, conversely, that the MWE

rules are not very important (in my systems) for translation quality and that perhaps the

MWEs are not even being used. Additional tuning of the rule filters and rule ordering can

possibly increase the impact of MWE rules on translations but this is left to future work.

The overlap with Moses or with the reference translation is much lower and generally

much more consistent, although the S set shows slightly higher and the M set slightly lower
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Figure 11.2: Cross overlap between LPA and SGA translations

overlap than other sets. Table 11.1 shows the average overlap across all configurations for

each system.

11.2 Comparing Systems by Automatic Quality Estimations

The BLEU (Papineni et al., 2001), NIST (Doddington, 2002), and METEOR (Lavie and

Agarwal, 2007) are the three automatic translation quality estimation metrics that I use for

my results. Generally, NIST and METEOR agree with BLEU in terms of relative rankings

of systems or configurations. NIST disagrees with BLEU in a few cases where the BLEU

scores are very close, but METEOR disagrees most strongly in the LPA development data,

where the Moses system reports the highest BLEU but the lowest METEOR score. This is

not, however, a general trend, as the METEOR score for Moses beats all SGA configurations

on development data and for both systems on the test data.
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Condition

System = Moses = Reference

Moses – 14.1

H&B-First 3.1 4.3

H&B-Oracle 5.5 12.7

LPA-First 2.0 2.8

LPA-Oracle 4.1 10.7

SGA-First 1.1 2.7

SGA-Oracle 5.5 10.5

Table 11.1: System-level overlap with Moses and the reference translation

In Figs. 11.3a and 11.3b I repeat the results shown in Figs. 10.1 and 10.2 and add

the First-METEOR and Oracle-METEOR scores for comparison. I will cover some of the

properties that can be found by examining these charts.

11.2.1 Coverage Versus Quality

One might expect that an increase in the absolute transfer coverage would increase the abso-

lute generation coverage as well but this is generally not the case for my systems, particularly

LPA. Indeed, the system with the lowest transfer coverage, the H&B baseline, has one of

the higher absolute generation coverages compared to LPA configurations and the highest

compared to SGA configurations, and it always has the highest relative generation coverage.

In contrast, the configuration with the highest transfer coverage in both systems, P6, has

one of the lowest generation coverages. These facts suggest that the systems that make use

of non-isomorphic and non-templatic MTRs are transferring MRSs that cannot be realized,

viz., because they are not well-formed MRSs or are MRSs not modeled by the target gram-

mar. With the millions of subgraph pairs I’m able to extract (see Sections 9.6.2 and 9.7.2),
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Figure 11.3: Intersective-First and Intersective-Oracle scores for BLEU and METEOR over
all LPA and SGA configurations
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it is easy to create very large transfer grammars with multiple MTRs matching the same

inputs at various graph orders but without more selective transfer ranking, the list of transfer

results fills up with ill-formed MRSs, pushing the good MRSs out of the top five (or top 25,

considering that there’s potentially five parse results as input to transfer). In other words,

the larger grammars seem to have increased recall at the expense of precision.

The other configurations, namely those in the S and O sets, do not exhibit this inverse

relationship between absolute transfer and generation coverage. They are more selective

about which MTRs are included in a grammar but also there are fewer rules to be added;

e.g., for the Tanaka development data subset, LPA-O6 only has 126 more rules than LPA-O5,

and SGA-O6 only has 25 more than SGA-05. Given that MTRs of larger graph orders are

preferred over smaller ones (see Section 7.2.2), I would expect to see some more variation,

good or bad, of coverage or quality. All configuration sets, but particularly the S and O

sets, show little to no variation for graph orders 4, 5, and 6 in both LPA and SGA. There

are several reasons, possibly more, why adding more rules does not change the coverage or

quality:

1. the larger rules can be built compositionally from smaller rules, thus nothing is gained

2. ill-formed MRSs output from larger rules, which would hurt coverage, are also ill-formed

from smaller rules, thus there is no change to generability

3. semantic material that would match the input of a rule was partially overwritten by a

previous non-optional rule of the same size, thus the second rule is not applied

11.2.2 Relative Scores and Trends

There is a big jump from First selection to Oracle selection for BLEU. This is not surprising,

as Oracle is designed to optimize for BLEU and First does not use an n-gram language model

to rank outputs, so there is no facility for targeting word orders preferred by the training
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corpus. There is a relatively small jump in METEOR scores from First to Oracle selection.

The difference in First–Oracle jumps will be discussed further in Section 11.2.3.

There is very little variation either within a set (e.g., all S or all O configurations) and

little variation across all configurations. Again, this is not surprising for the Oracle scores,

as the systems for each configuration are likely to select similar, or even the same, realized

strings for each configuration and the pool of realized sentences can be very large (five parses,

five transfers, and twenty realizations means there are potential 5×5×20 = 500 realizations

per input item). More interesting is the lack of variation among First-BLEU scores, which

suggests that that the different configurations might be transferring equivalent MRSs. The

METEOR scores also show flatter trends than the BLEU scores (again, see Section 11.2.3

for further discussion).

None of my configurations in LPA or SGA beat Moses on BLEU, which is what I expected.

All of my LPA configurations beat Moses on METEOR, but they are all very close. For

SGA, however, none beat Moses on METEOR, but again it is very close. With such slight

differences, the “winner” could swap just by calculating over different subsets of the data

(Moses’s METEOR score over the LPA intersection is lower than all SGA METEOR scores,

while the LPA scores are fairly consistent with those of SGA).

The Oracle BLEU scores for the M and P sets and to a lesser degree the O set for LPA

show a downward trend as the graph order increases, which suggests that the MWE MRS

transfer rules (MTRs) I create are causing bad transfers to push the good ones off the beam.

It’s not immediately clear whether this is from MWE rule quantity (according to Table 9.7

on Page 169, the M set ranges from ∼65k–219k rules for the Tanaka development data and

the P set from ∼35k–190k, whereas the O set ranges from ∼19k–24k rules), or quality (the M

and P sets include non-isomorphic rules, whereas the O set only includes isomorphic rules).

In SGA this trend is less severe and it is even reversed for the O set such that O5 has the

highest Oracle BLEU. This reduction and reversal of the trend is perhaps due to lower-order

pairs being noisier (i.e., having less translationally equivalent mappings) and the higher-order

subgraphs intervening before the lower-order ones are applied.



200

11.2.3 Metric Stability

The difference between Moses and my systems is larger for BLEU than for NIST and ME-

TEOR. Here I look at the difference between Moses and all configurations of each system in

order to distill down the mean difference and quantify the variance in the metrics. First I

rescale each score s ∈ S such that the highest score becomes 1.0: snorm = s
max(S∪{m}) , where

m is the Moses score for the corresponding metric. I also calculate the normalized Moses

score mnorm similarly. I then find the difference between the normalized Moses score and

my normalized scores: ∆ = {|mnorm − snorm| : snorm ∈ Snorm}. The mean and standard

deviation of these differences are shown in Table 11.2 for both the intersective-First and

intersective-Oracle scores for LPA and SGA. The metric with the largest mean difference, as

well as the most variance, is BLEU, followed by NIST, then METEOR. The differences are

even more pronounced in the systems using First-selection rather than Oracle, with NIST

and METEOR showing more stability. These differences highlight the sensitivity of the

metrics to matching the reference string, as BLEU looks for exact tokens, NIST gives more

weight to rare n-grams and has a more forgiving brevity penalty, and METEOR performs

stemming and synonym matching to make the metric even more robust to small differences

from the reference translation.

Comparison System ∆BLEU ∆NIST ∆METEOR

LPA First 0.551± 0.126 0.296± 0.031 0.123± 0.009

SGA First 1.439± 0.202 0.531± 0.043 0.239± 0.010

LPA Oracle 0.062± 0.035 0.046± 0.013 0.028± 0.014

SGA Oracle 0.106± 0.015 0.079± 0.014 0.024± 0.007

Table 11.2: Difference in normalized BLEU, NIST, and METEOR between
Moses and my systems (mean ± standard deviation)
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11.2.4 Summary

I examined the relationship between coverage and translation quality in Section 11.2.1, the

relative scores and trends of quality estimations in Section 11.2.2, and looked at the stabil-

ity of the quality estimation metrics in Section 11.2.3. Through this analysis and that of

Section 11.1, the story explaining the systems’ performance begins to take shape. MWE

rules have the potential to yield more natural and semantically adequate translations but

increasing the size and number does not correlate with increases in translation quality. Next

I will look further into properties of the subgraph pairs that are the source of information

for my transfer rules.

11.3 SGA Subgraph Topologies

The size and shape of the semantic subgraphs are strongly tied to my ability to create useful

transfer rules from them. In this section I will look into these properties to reason about

challenges with automatically building expressive transfer grammars.

It is much easier to find a full bilingual variable binding (see Section 7.3.2), which I sus-

pect plays a large role in generability of transferred MRSs, when the graphs are isomorphic

but as the graph size increases it becomes increasingly unlikely that the two will be isomor-

phic. Ignoring variable types and argument roles, there are a limited number of structural

variations possible. Graphs of order 1 and 2 have only one structure each, assuming graphs

must be connected. An order-3 graph has two possible structures (where the two internal

nodes are both arguments of the top one, or the third node is an argument of the second

and the second of the first.

In general, any internal subgraph structure is possible as long as there is exactly one

outer (i.e., top) node. The number of graph structures for graphs of n nodes is the Cata-

lan number for n − 1, where a Catalan number is defined as Cn = 1
n+1

(
2n
n

)
. Table 11.3

shows the number of graph structures available for orders up to 6. The examples column

shows a shorthand for the structures where, e.g., (()) could be used for a subgraph like
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Order Number Examples

1 C0 = 1 ()

2 C1 = 1 (())

3 C2 = 2 (()()), ((()))

4 C3 = 5 (()()()), (()(())), ((())()), ((()())), (((())))

5 C4 = 14 . . .

6 C5 = 42 . . .

Table 11.3: Graph orders and numbers of structural variants

(x0 / _vessel_n_1 :RSTR-H-of (u0 / _the_q)). These counts represent the number of

abstract structures subgraphs can take but not the variations considered by my isomorphism

comparison, which takes into account the variable type and argument roles.

Table 11.4 shows the percentage of order-3 subgraphs in LPA and SGA, from both Jacy

and ERG MRSs, that exhibit the given structure. The numbers are taken from subgraph

pairs, so the data is already filtered as described in Chapter 6. For LPA, which extracts

subgraphs from aligned predicate phrases, the distribution of the two graph structures is

about the same. For SGA, which enumerates subgraphs via a rooted traversal, the distribu-

tions are nearly opposite, with Jacy producing more non-branching subgraphs and the ERG

producing more branching subgraphs. The difference here may be a partial reason for SGA

having a relatively larger difference between its isomorphic and non-isomorphic subgraph

pairs than does LPA.

Table 11.5 lists the top eight (of more than 300) order-3 structures with roles for Jacy and

the ERG in SGA.3 For Jacy, the most frequent structure is (:ARG1-EQ-of(:ARG2-NEQ())),

3Note that one structure in the Jacy column has four roles; this is still an order-3 graph, because two
of the roles are re-entrant. This happens with event coordination (e.g., て te sentential coordination in
Japanese), where the coordinator separately selects the scope handle and event index of the left and right
coordinands. In simple sentences where coordinands are not scopally modified, the scope handles and
event indices point to the same nodes in DMRS.
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Data % (()()) % ((()))

LPA-Jacy 21.2 78.8

LPA-ERG 24.8 75.2

SGA-Jacy 39.7 60.3

SGA-ERG 68.1 31.9

Table 11.4: Percentage of subgraphs with the given structure

which is used for things like compounding, adnominal の no constructions, and other PP

constructions. For the ERG the most frequent structure is (:ARG1-NEQ():ARG2-NEQ()),

which is used, e.g., for transitive verbs. The most frequent structure for Jacy is the second

most frequent for the ERG and vice versa.

Count Jacy Count ERG

7,521 (:ARG1-NEQ():ARG1-EQ-of()) 9,329 (:ARG1-NEQ():ARG1-EQ-of())

7,911 (:ARG2-NEQ(:ARG1-EQ-of())) 10,334 (:ARG1-H():ARG2-H())

7,994 (:ARG2-NEQ():ARG1-EQ-of()) 10,638 (:ARG2-NEQ(:RSTR-H-of()))

8,516 (:ARG2-NEQ(:ARG1-HEQ())) 13,828 (:ARG1-NEQ():RSTR-H-of())

14,943 (:L-HNDL-HEQ():L-INDEX-NEQ: 20,702 (:L-INDEX-NEQ():R-INDEX-NEQ())

R-HNDL-HEQ():R-INDEX-NEQ)

17,666 (:L-INDEX-NEQ():R-INDEX-NEQ()) 25,328 (:ARG1-EQ-of():RSTR-H-of())

19,862 (:ARG1-NEQ():ARG2-NEQ()) 29,887 (:ARG1-EQ-of(:ARG2-NEQ()))

80,632 (:ARG1-EQ-of(:ARG2-NEQ())) 33,941 (:ARG1-NEQ():ARG2-NEQ())

Table 11.5: Most frequent order-3 structures, with roles, in Jacy and the ERG

If I include each node’s variable type, as is done for isomorphism comparisons, there
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are even more variations. It is then no surprise that isomorphism is such a strong filter of

subgraph pairs. Not only are there many differences in structure, even for 3 × 3 pairs, but

the distributions of those structures differ between the source and target language as well.

For the rest, i.e., the non-isomorphic pairings, I cannot reliably find a bilingual variable

binding for every variable (see Section 7.3.2). A rule without complete variable bindings

can still transfer, but the (unbound) semantic material on the output will be inaccessible to

successive rules and it will likely result in a disconnected MRS. This situation can explain

why configurations with larger graph orders (e.g., M6, P6) have such low generation coverage.

I will explore semantic errors (such as disconnectedness) that lead to MRSs that cannot be

realized in the next section.

11.4 Semantic Analysis

The connectedness of an MRS (see Section 5.3.1) is one of several well-formedness conditions

that the PyDelphin4 software can test for. Other conditions of well-formedness tested by

PyDelphin include: (1) each EP must have a label; (2) each EP must have an intrinsic

variable; (3) no EP may have more than one quantifier; (4) every qeq must bind a hole to

the label of some set of EPs; etc. I apply these tests to the MRSs output by transfer to see

if well-formedness errors correlate with generability.

Fig. 11.4 plots the percentage of transfer outputs that are disconnected (circles) or oth-

erwise ill-formed (triangles) for H&B, LPA, and SGA. As this is over the transfer outputs

and not the realizations, there are no separate counts for First or Oracle selection. Since

disconnectedness is included with ill-formedness, the former is never higher than the latter.

The H&B set generally has a low number of errors. This is likely due to the fact that the

H&B methodology relies on hand-written templates which have the advantage of accurate

bilingual variable binding. This in turn avoids the creation of rules that create disconnected

structures. I therefore find it surprising that the S set had fewer errors than the H&B set,

4https://github.com/delph-in/pydelphin

https://github.com/delph-in/pydelphin
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Figure 11.4: Errors in transferred MRSs

although this could be due to outdated templates for H&B’s single rules. The chart also

confirms my expectation that the M and P sets (with the less-constrained MWE rules) have

the most errors and that the O set has fewer than M and P. There is also a noticeable drop

(10–20%) in disconnectedness from LPA to SGA outputs, which is perhaps due to the way

SGA enumerates subgraphs that are already connected and rooted. That is, the structural

constraints in SGA’s subgraph enumeration may make it easier for bilingual variable binding

to find a full mapping. The O set is peculiar here for not increasing in disconnectedness or ill-

formedness as larger rules are introduced, as well as the lowest rates of semantic error overall

in SGA, except for S1. It is true that the larger O configurations do not introduce many new

rules over their previous iteration, especially for SGA, and this fact by itself could account

for the lack of change in semantic errors. There is, however, a relatively large increase in

rules from O2 to O3 that does not show an increase in errors, unlike for S1 to S2, M2 to
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M3, or P2 to P3. Lastly, the O sets (both for LPA and SGA) do not have many instances of

ill-formedness that are not disconnectedness. These facts suggest that the non-isomorphic

MWE rules are introducing semantic errors at a higher rate than the isomorphic or templatic

rules.

11.5 Performance Comparison

The way the various configurations are constructed may have effects beyond just the coverage

and translation quality and these effects may help shed light on problems in the rule selection

or transfer grammar augmentation processes. While I only take the top five transfers for

my experiments, ACE5 reports how many it can find before it exhausts the search space,

hits a timeout, or hits the memory limit. More specifically, the transfer coverage numbers

shown earlier in Figs. 10.1 and 10.2 exclude outputs that include untransferred material,

when in fact ACE outputs something—fully or partially transferred—for nearly every input.

In contrast, generation in ACE only reports the number of realizations found up to the

specified limit and it does not output partial realizations. In the performance charts below,

for transfer I use the count of all possible transfers, whereas for generation I use the number

of realizations stored.

11.5.1 Transfer Performance

Fig. 11.5 plots the average number of possible transfers per input for each configuration

in H&B, LPA, and SGA. The maximum number of transfers for an input is 5,335 and the

minimum is zero, but the highest average is around 140. I also plot in the same chart the

average number of times a duplicate MRS was transferred per input, i.e., the number of times

the same MRS was produced via different paths through the transfer grammar. The number

of duplicates reaches as high as 1,296 but usually it is zero, which keeps the average low.

The highest average is about 2.7. Note that while the number of duplicates correlates with

5http://sweaglesw.com/linguistics/ace/

http://sweaglesw.com/linguistics/ace/
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the number of results, the numbers plotted use different scales, with the scale for the number

of results on the left and the scale for the number of duplicates on the right of Fig. 11.5.

Fig. 11.5 shows the following: (1) LPA has more total results than SGA for the S and O

sets; (2) the number of duplicates appears correlated with the number of results for all LPA

configurations and for H&B, but not for SGA; and (3) the M set has a relatively low number

of results. (1) and (3) above can be explained by looking at when transfer hits the timeout

or memory limit.
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Figure 11.5: Transfer ambiguity in LPA and SGA

Fig. 11.6 plots the average number of times transfer hit a timeout or a memory limit (i.e.,

a memout). While these are both symptoms of an inefficient grammar, the two numbers

are mutually exclusive: a transfer task can only hit a timeout or a memout, not both. Both

symptoms are relatively infrequent, so I plot both on the same axis, shown on the left.

Figs. 11.5 and 11.6 plot different performance metrics but when I scale the charts so the

largest value is near the top, the two charts look very similar. Specifically, the number
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Figure 11.6: Percentage of transfer inputs that hit the timeout or memory limit

of potential transfer results shown in Fig. 11.5 closely follows the frequency of timeouts in

Fig. 11.6. This is because, as explained in Footnote 6 on Page 121, transfers that hit the

timeout while exploring the search space dump out the partially-transferred MRSs, so these

items have many more results than those that completed the search. Those results will

likely only be partially transferred and thus not counted in transfer coverage, which explains

why there is not a strong correlation between timeouts and transfer coverage (as reported

in Figs. 10.1 and 10.2). Memouts, in constrast, cause ACE to abort transfer and return no

results, which explains why the M set, which hits memouts more often than other sets, has

relatively few results.

As for pattern (2) above—the correlation between duplicates and results for LPA but

not SGA, I don’t have a good explanation. Perhaps multiple aligned predicate phrases cover

the same semantic material but the extracted subgraphs appear different, thus evading my

filters for identical subgraph pairs. This situation would lead to a grammar with multiple
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transfer rules that do the same thing, thus leading to duplicate MRSs on output. I will

not pursue further speculation as to why LPA has more duplicates but I will note that if

the duplicate outputs were removed from both LPA and SGA, then SGA would have more

potential results than LPA. This would mean that the increase of timeouts in LPA seem to

be happening when transfer is exploring search paths that lead to duplicate MRSs.
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Figure 11.7: Realization ambiguity and timeouts

11.5.2 Generation Performance

For the generation step in the pipeline, Fig. 11.7 shows the number of results per input along

with the percentage of inputs that timed out. Fig. 11.8 shows the number of untransferred

predicates and transferred predicates that do not match any EP in the target grammar (a

lexical gap). That is, the both the untransferred and lexical gap numbers plotted in Fig. 11.8

are the same kind of error for the target grammar—predicates that do not match an EP in

the grammar—but one is an untransferred predicate from the source grammar and one is a
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Figure 11.8: Partial transfers and lexical gaps

transferred predicate that simply does not exist in the target grammar (perhaps it is from

a rule targeting a previous version of the grammar). Transfer results that have even one

predicate that does not map to a target grammar predicate will not result in a realization.

Comparing Figs. 11.7 and 11.8, the percentage of inputs with unusable predicates does seem

to correlate with the number of realization results, e.g., for the S and O sets, but it does

not fully explain, e.g., the M and P sets. When ACE encounters an input with unusable

predicates, it terminates the generation process early, so these inputs are unlikely to trigger

a timeout. The M and P sets have more timeouts than the other sets, which is probably

due to the incomplete bilingual variable bindings in the transfer rules that produced them.

Earlier I argued that these incomplete bindings prevent full transfers. These results suggest,

however, that even if an input is fully transferred using rules with incomplete bilingual

variable bindings, the resulting MRS is underconstrained. Being underconstrained makes

it harder for the generator to map the MRS to a derivation, leading to more timeouts.
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Considering all three conditions (the two kinds of unusable predicates plus the timeouts),

the realization counts in Fig. 11.7 seem to be mostly explained.

11.5.3 Summary

The performance characteristics of the transfer and generation steps are able to largely

explain the number of results obtained from each step. For transfer, timeouts, memouts,

and the number of duplicate MRSs produced per input explain why LPA produces more

transfers in the S and O sets and why the M set has so few transfers. For generation, the

number of unusable predicates and timeouts mostly explain why the S and O sets get more

realizations in LPA, and why the M and P sets have fewer realizations for the larger rule

sizes.

11.6 Translation Examples

Here I present several example translations from configurations of my systems in order to

see where they succeed and where they fail. As in Section 10.5, I give the original Japanese

sentence, the reference translation, the translation from Moses, then one or more translations

from my systems. All of the translations from my systems come from Oracle selection. Often

only one translation from my systems is sufficient, because most of them are the same, as

discussed in Section 11.1.

One problem I find prevalent concerns resultative or experiential-aspect constructions

using -ている -te iru, as they have the same form as progressive constructions. Fig. 11.9

gives examples of verbs with experiential aspect marking, where my system translates using

the progressive aspect. The first item translates 会っていない atteinai “have not met”

as are not meeting. This example also exhibits a problem with the scope of the negation

(I think you are not instead of I don’t think you are)—in fact, if the first problem were

fixed (I think you have not met him) the output would be a literally correct translation,

but in English the phenomenon called neg-raising leads to the more idiomatic phrasing

exhibited in the reference translation. In Fig. 10.5 in Section 10.5, the second item is similar,
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where my system uses the progressive working where the habitual works is more natural,

but in this case it is not a bad translation. The second and third items in Fig. 11.9 exhibit

the same problem. In all of these cases, it is likely that the parses given by Jacy have

the morphosemantic property for progressive aspect turned on (e.g., if the parse with the

progressive reading is ranked higher) and these get passed through transfer to the ERG

as I do not handle morphosemantic properties in my transfer rules at all. Even with this

error, the output is sometimes an improvement over Moses (as with the second item), and

sometimes not (as with the third).

Japanese あなたは彼に会っていないと思う。
Reference I don’t believe you’ve met him.
Moses Have you met him. I don't think.
SGA-O5 I think you are not meeting him.

Japanese 外国の切⼿を持ってますか。
Reference Do you have any foreign stamps?
Moses A foreign stamps?
SGA-O5 Are you having foreign stamps?

Japanese あなたは彼の兄さんを知っていますか。
Reference Do you know his brother?
Moses Do you know his brother?
SGA-O5 Are you knowing his brother?

Figure 11.9: Experiential versus progressive errors in translation

Fig. 11.10 represents a class of errors that mistranslatesする suru as do. する suru does

mean do in many contexts, but it is also used as a light verb, or to mean to wear, to have, etc.

Moses, in contrast, elects to drop the verb altogether, perhaps due to the target language

model giving low scores for translations where one is doing an expensive necklace.

Idiomatic readings are often translated literally, both by my systems and by Moses. The

SGA-S2 translation of the first item in Fig. 11.11 is in fact an accurate literal reading of

the Japanese sentence, but 肝をつぶす kimo o tsubusu “to smash liver/innards” has the
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Japanese 彼⼥は⾼価な⾸飾りをしています。
Reference She is wearing an expensive necklace.
Moses She is expensive necklace.
SGA-O5 She is doing an expensive necklace.

Figure 11.10: Wrong sense of する suru in translation

idiomatic meaning to be frightened. Also, the word つぶす tsubusu can mean to crush—i.e.,

to kill—in some contexts, which leads to the other mistranslations. For the second item,

there are several problems. The first affects mainly Moses and is caused by X のために
X-no tame-ni, which often means for the purpose of X or in order to X, but here it means

because of X. The second is a morphological issue affecting my system that leads to a

realization of 盗み nusumi “stealing” as steals.6 The main error affecting my system, but

which Moses got right, is the idiom ⾸になる kubi-ni naru “to be fired”, whose surface form

literally means to become [a] neck.7

Japanese ⼤きな物⾳で私は肝をつぶした。
Reference The loud noise gave me a terrible fright.
Moses I was in a great noise killed.
SGA-S2 I mashed liver with a big noise.
SGA-M2 I killed a duct by the big noise.

Japanese 彼は盗みのために⾸になった。
Reference He was fired for stealing.
Moses He was fired in order to steal.
SGA-O5 He became a neck, for steals.

Figure 11.11: Literal versus idiomatic errors in translation

6Both Jacy and the ERG have sophisticated morphological models, but these errors can come up because
I do not handle morphosemantic properties, and secondly because the stem form in Japanese (as 盗み
nusumi is) can be translated in a variety of ways depending on the context.
7The idiom evokes the meaning of decapitation as a metaphor for severe punishment, e.g., being dismissed

from employment. English has similar idioms, e.g., to risk one’s neck and to get it in the neck.
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Fig. 11.12 shows an example where Moses and my system failed to translate a large

enough fragment of the input, leading to a collocation error. The literal translation is He

admitted the responsibility of his negligence, where ⾃分の過失の責任 jibun-no kashitsu-

no sekinin “responsibility of one’s negligence” is a noun phrase. The reference sentence

uses owned up to capture the meaning behind a partially overlapping phrase, 責任を認
める sekinin-wo mitomeru “to admit responsibility”. Moses translates just the part about

responsibility and ignores the admission, while my systems instead translates the admission

and the noun phrase separately, leading to the awkward his fault responsibilities.

Japanese 彼は⾃分の過失の責任を認めた。
Reference He owned up to his fault.
Moses He is responsible for his own mistake.
SGA-S2 He admitted to his fault blame.
SGA-M2 He admitted to his fault responsibilities.

Figure 11.12: Collocation mismatch error in translation

Note that my translations in Fig. 11.12 would perform better on BLEU because they

have the bigram his fault where the one from Moses only has unigrams. The better overlap

of my translations with the reference string is an effect of the Oracle selection. In other (i.e.,

unselected) translations, my system outputs different possessive pronouns in place of his,

including my, her, etc., but Oracle selection prefers his because it appears in the reference

string. The fact that my system does not prefer his except through Oracle selection brings

up another challenge for my systems: pronoun agreement. 彼 kare “he” and ⾃分の jibun-

no “one’s” are close in the surface string, which likely helps Moses choose the appropriate

pronoun, but they are very distant in the semantic representation, as shown in Fig. 11.138

where the pron predicates representing those words are separated by five nodes (or six edges).

The distance in the semantic graph makes it difficult for the rules I extract to capture the

8The implicit quantifiers are omitted for simplicity.
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relationship. Furthermore, neither Jacy nor JaEn utilize any coreference resolution so there

is currently no principled way for a reflexive pronoun to agree with its antecedent.

pron _wa_d pron _no_p _kashitsu_n_1 _no_p _sekinin_n _mitomeru_v_1

top

index
arg2/eq arg2/neq arg1/eq arg2/neq arg1/eq

arg1/neq

arg2/neq

Figure 11.13: DMRS for 彼は⾃分の過失の責任を認めた

The final example, given in Fig. 11.14, shows a strength of my system. While there are

some word-sense mistakes, such as translating 聞く kiku “listen” as hear and ⾳楽 ongaku

“music” as pieces of music, my systems correctly translate the negation, which is a crucial

part of the meaning. Moses drops the negation entirely, leading to a translation of opposite

polarity, although it would perform well on n-gram evaluation metrics as it only differs by

one token: not. Because the negation occurs on the main verb, the semantic representation

has the neg predicate on its top node, so it would be unlikely for my systems to ignore it

during transfer.

Japanese 彼らは⾳楽を聞いていませんでした。
Reference They were not listening to music.
Moses They were listening to music.
SGA-O2 They were not hearing the pieces of music.

Figure 11.14

11.7 Conclusion

In this chapter I have investigated many aspects of the translation process and its outputs

in order to characterize the successes and failures of my systems. In Section 11.1 I looked at
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the overlap between my systems, the reference translation, and the baseline translations and

found that my systems tend to produce the same translations for the various configurations.

In Section 11.2 I found patterns in the translation quality estimation metrics and the coverage

which suggest that the larger MWE rules tend to hurt coverage without increasing translation

quality. I then investigated why the larger rules are hurting coverage. In Section 11.3 I

reasoned that the larger subgraphs, even for 3 × 3 orders, have many different shapes for

the purpose of isomorphism comparisons, which could lead to incomplete variable mappings

from the source to the target in the transfer rules. I tested this conjecture in Section 11.4

by analyzing the MRS outputs of transfer for well-formedness, finding that many results

of transfer, particularly for the M and P sets, are disconnected MRSs. I then looked at

performance characteristics of transfer and generation to see how problems in the semantic

representations affected the number of results, timeouts, memouts, etc., and reinforced the

finding that the non-isomorphic, non-templatic MWE rules decreased transfer coverage and

increased generation timeouts. Finally I looked at a number of actual translation examples

to see what kinds of linguistic errors it was making and found that, despite the use of larger

semantic fragments in transfer, my systems prefer literal readings of idioms and simplistic

morphological mappings.

The main quantitative finding is that I was able to meet and, at times, exceed the

results of the H&B baseline without the use of hand-developed, hand-tuned templates. The

templates seem to do a better job than my methodology at avoiding the capture of material

that is not translationally equivalent and at bilingual variable binding, but it also requires

significant manual effort to create the templates and to maintain them with respect to

updated versions of the source and target grammars. My method finds many more rules

than the templates, especially at larger subgraph sizes, but more work is needed to filter out

the bad rules and to more accurately bind the variables bilingually. Once those methods are

in place, my method holds the promise of producing more idiomatic rules that accurately

transfer semantic fragments and, combined with transfer, realization, and end-to-end ranking

as described by Velldal (2008), more natural translations than is currently possible for MRS-
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transfer based systems. Furthermore, without the need to manually build templates, my

method is more readily applicable to other grammar pairs, i.e., beyond Jacy and the ERG.

To be certain, there are settings and processes in my methodology that are built for Jacy

to ERG translation, such as the lists of predicates to drop in Tables 9.4 and 9.8 and the

SGA subgraph prefilters in Table 9.9, and perhaps implicit biases in my graph traversals and

variable binding algorithms. But I kept these distinct as parameters and not hard-coded

decisions so that they can easily be swapped out for other values.

In my test results I did not beat the Moses baseline on the automatic translation quality

estimates, although the difference is not large, especially for the METEOR metric. I see,

however, opportunity in these results, as they were obtained without significant tuning to

my system, nor with any sort of ranking of the final transfer outputs. Furthermore, it is

simple to obtain a list of predicates that my systems fail to transfer, which helps direct rule

extraction efforts. From my analysis above, I think that significant gains could be made by

improving the bilingual variable binding for non-isomorphic rules. A simple way of doing

this for LPA is to use predicate alignments from Moses instead of Anymalign, as Moses

provides internal token (predicate) alignments as well as predicate phrase alignments, and

these internal alignments could be projected into the extracted subgraphs. I list some other

thoughts on future work in Section 12.2.
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Chapter 12

CONCLUSION

This dissertation has presented two novel methods for automatically extracting MRS

transfer rules from bilingual semantic corpora in order to augment a transfer grammar for

use in machine translation. Semantic transfer grammars, which map representations from

one semantic model to another, need frequent maintenance because they lose applicability

as the source or target models change (e.g., when the grammars describing the models are

updated). Hand-building and maintaining transfer grammars is infeasible because of the

need for regular updates and also because the expertise required is immmense—a developer

not only needs to be compentent in both the source and target languages, but also needs to be

familiar and current with the semantic models of both sides. For these reasons, automatic

methods of augmentation are crucial for any practical usage of transfer grammars. My

two methods of transfer rule extraction assume a bilingual semantic corpus (or the means

to produce one), but otherwise require very little language-specific information in order to

extract rules.

My first method, LPA, extends previous work (Haugereid and Bond, 2011, 2012) on

repurposing n-gram aligners from phrase-based translation method in order to find align-

ments of semantic predicate phrases. My second method, SGA, develops a graph-native

method of finding semantic subgraph pairs by building a statistical model over enumerated

subgraphs—a method inspired by previous methods that traverse semantic (Jellinghaus,

2007) or syntactic (Hearne and Way, 2003; Graham et al., 2009) structures. My methods

generally match the performance of the previous methods on automatic evaluation metrics,

but do so without the use of hand-built and hand-tuned templates. The methods therefore

allow one to bootstrap and maintain a transfer grammar for a pair of existing monolingual
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grammars with much less effort than before.

Using LPA, I extracted 358,407 aligned subgraph pairs, which resulted in end-to-end

translation coverage of 18.4%. SGA extracted 977,532 aligned subgraph pairs, but had end-

to-end coverage of 10.6%, showing that increasing the number of rules does not necessarily

lead to higher coverage.1 On the test data, LPA achieved a BLEU score of 24.86, while SGA

achieved 29.74. My two systems trade off coverage for quality, but are generally competitive

with the H&B baseline, which had 12.6% coverage and a BLEU score of 30.40. My systems

still lag behind Moses (Koehn et al., 2007) on BLEU (i.e., an n-gram based evaluation of

an n-gram based system), which gets 35.05, but on METEOR, an alternative metric which

is more forgiving of minor variations and has been shown to correlate more strongly with

human judgments (Banerjee and Lavie, 2005; Lavie and Agarwal, 2007), my SGA system

gets 34.83 compared to Moses’s 35.80.

Below I briefly cover some of the methodological and artifactual (i.e., software) contri-

butions of this dissertation in Section 12.1. I reflect on some of my challenges and propose

directions for future work in Section 12.2. Finally, I offer some big-picture concluding re-

marks in Section 12.3.

12.1 Methodological and Artifactual Contributions

This dissertation resulted in several new methods for working with semantic representations

and for the transfer rule extraction task. I created a method for projecting a list of predicates

onto semantic graphs and enumerating the unique subgraphs that can be built around nodes

matching the predicates (see Sections 5.6.1 and 6.1). I devised a test for link orientation

that follows the principles of well-formedness for MRS instances in order to perform rooted

traversals of DMRS graphs (Sections 5.3.3 and 5.4.2). The rooted traversal yields a singly-

rooted DAG, often an arborescence, and often spanning the entire DMRS graph using only

the edge directions preferred by the link orientation. The traversal normalizes the source

1After filtering to include only task-relevant rules, as described in Section 7.2.1, most configurations in
fact have a similar number of rules.
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and target graph structures and typically results in nodes being more significant than their

descendants to the meaning of the graph overall. I make use of this result to enumerate

and pair subgraphs of the traversal as a second method of finding aligned subgraph pairs

(Sections 5.6.2 and 6.2), for which I also define a variation of ϕ2 ranking that discounts the

score by the difference in source and target subgraph orders (Section 6.2.4). I also use the

graph normalization provided by the rooted traversal with a test for structural isomorphism

(Section 5.3.2) to aid in a heuristic for finding bilingual variable bindings, i.e., subgraph-

internal node mappings, which help my rules to be more useful in transfer (Section 7.3.2).

In addition to the methodological advancements listed above, the course of this disser-

tation saw the development of numerous software artifacts as well. PyDelphin,2 which has

already been mentioned in this document, began as a set of functions of MRS representations

for the automatic detection of errors in implemented grammars (Goodman and Bond, 2009).

For this dissertation I greatly expanded the capabilities of PyDelphin to model DMRS as

well as MRS, including functions for serialization, inspection, and transformation; to read

TDL (Copestake, 2002) in order to help with grammar inspection; to read and write the YY

token format for the robust handling of unknown tokens when parsing with Jacy; to read,

write, and transform [incr tsdb()] (Oepen and Flickinger, 1998) profiles, which are heavily

used in my translation pipeline; to manage interactions with a running ACE3 process; and

more. PyDelphin is thoroughly documented and follows common software engineering prac-

tices, including extensive unit tests, semantic versioning,4 etc., as it is now used by more

people than just me, and it is the backbone of several other projects described below, in-

cluding: Bottlenose, Demophin, GTest, and XMT. Bottlenose5 is an HTTP service I wrote,

collaborating with Stephan Oepen on the API, that accepts requests for parsing and gener-

ating sentences, processes the requests using PyDelphin and ACE on a server, then responds

2https://github.com/delph-in/pydelphin
3http://sweaglesw.org/linguistics/ace/
4https://semver.org/
5https://github.com/delph-in/bottlenose

https://github.com/delph-in/pydelphin
http://sweaglesw.org/linguistics/ace/
https://semver.org/
https://github.com/delph-in/bottlenose
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with the results. This service is currently used by two web-based front ends: Demophin and

delphin-viz. Demophin,6 which I created, presents results in a DMRS visualization (which

led to the graphical presentation of MRS and DMRS in this document) and allows users

to view generation results as well. The other front end, delphin-viz,7 was created by Ned

Letcher and shows derivation trees and MRS representations in addition to DMRS, but does

not do generation. Web demonstrations using these front ends and Bottlenose on the back

end exist for the ERG and Jacy, both of which proved valuable for inspecting DMRS analyses

in my research, and demonstrations also exist for the Mandarin grammar Zhong [|] (Fan

et al., 2015), the Indonesian grammar INDRA (Moeljadi et al., 2015), the German grammar

GG (Müller and Kasper, 2000; Crysmann, 2005), and the Hausa grammar HaG (Crysmann,

2017). GTest8 is a grammar debugging tool I wrote that includes semantics well-formedness

tests based on those described in Section 5.3. The Penman library9 is a small package I

wrote specifically for serializing and deserializing graphs in PENMAN notation. I use it for

reading and writing the bilingually aligned DMRS subgraphs used in this dissertation, but it

is equally capable of working with AMR (Banarescu et al., 2013) data. Finally, I created the

XMT project10 which applies the PyDelphin and Penman libraries to create the translation

pipeline that I use in my experiments as well as various data-preparation scripts.

Above I listed software projects that started or were significantly developed as a direct re-

sult of my research, but the research also resulted in smaller contributions to existing projects.

Several bugs in the ERG were found and reported (and often fixed by Dan Flickinger) and

many more in Jacy were found and reported (and often fixed by Francis Bond and occasion-

ally by me). I updated, with help from Francis Bond, the JaEn transfer grammar to the

most recent releases of Jacy and the ERG. I also updated its rule-extraction tools, which

6https://github.com/goodmami/demophin
7https://github.com/delph-in/delphin-viz
8https://github.com/goodmami/gtest
9https://github.com/goodmami/penman

10https://github.com/goodmami/xmt

https://github.com/goodmami/demophin
https://github.com/delph-in/delphin-viz
https://github.com/goodmami/gtest
https://github.com/goodmami/penman
https://github.com/goodmami/xmt
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were used for the H&B (Haugereid and Bond, 2011, 2012) baseline. My use of ACE for

processing led to the discovery of several bugs and deficiences, some of which were fixed by

Woodley Packard and others were fixed by me, such as the timeout mechanism for transfer

and generation. Finally, I added or expanded documentation on the DELPH-IN wiki,11 often

as a result of discussions within the DELPH-IN community or to aid in my implementation

of technologies in PyDelphin.

12.2 Next Steps and Future Research

The exploration of the performance of my two systems revealed a number of possible improve-

ments or directions for future research. In general I could experiment with different thresh-

olds, training data, etc., but I will not discuss those specifically. Some of the improvements

below (rule ordering and optionality; rooted enumeration in SGA; automatic post-transfer

editing) address deficiencies in my methodology while others (Moses alignments and alterna-

tive linearizations for LPA; further DMRS simplifications; EM rule weighting for SGA) are

logical next-steps for additional exploration. The future research directions (subgraph in-

terpolation; improved bilingual variable binding; intermediate result ranking and end-to-end

ranking; neural parsing, transfer, and generation) represent more significant methodological

changes inspired by what I have learned.

Moses Alignments for LPA I only experimented with Anymalign (Lardilleux et al.,

2012) alignments of predicate phrases, but Haugereid and Bond (2011, 2012) showed that

Moses (Koehn et al., 2007) was able to find alignments that Anymalign could not, so I could

potentially increase the number of unique aligned subgraph pairs merely by including Moses

alignments. Moses alignments have another potential benefit which has not yet been explored

for transfer rule extraction: they include internal (i.e., predicate-to-predicate) alignments

which could replace my heuristic bilingual variable binding. These internal alignments are

derived from the data, so it is likely they will do better for non-isomorphic subgraph pairs

11http://moin.delph-in.net/

http://moin.delph-in.net/
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than my current strategy.

Alternative Linearizations for LPA For LPA I only found n-gram alignments for pred-

icates linearized according to their surface order. Structures built over surface-ordered pred-

icates would look more like syntax than semantics and given that I filter out extracted

subgraphs that are disconnected, the extraction process could benefit from a linearization

that is closer to the semantic structures. It would therefore be a useful experiment to substi-

tute the surface-order linearization of predicates with a topological linearization, e.g., using

the rooted traversal order, and see if it results in more, or better, extracted subgraphs. It

may be that such subgraphs would look more like those of SGA, which are enumerated via

the same kind of traversal, so the results should be compared for overlap with the SGA

subgraphs.

I also limited the n-gram alignment to use the first parse results of the bisem corpus.

I have up to five results per item and it is not guaranteed that the first item is the best

parse, so LPA could benefit by considering linearizations for parse results beyond the first.

Using all five source and target results would increase the size of the training data up to

25 times and many of the additional alignments will be repeated, so it would make sense to

simultaneously adjust the frequency or probability thresholds (as described in Section 9.6.2).

Rule Ordering and Optionality A deficiency in the rule selection and ordering process

is that a large transfer rule matching the input blocks smaller rules that match a subset

of the larger rule’s input pattern. This situation is due to (1) larger rules being applied

before smaller rules and (2) my rule-optionality strategy where rules are grouped by their

input pattern and the last one is made non-optional. Experiments to make all MWE rules

optional (so smaller rules get a chance to apply) led to increased timeouts and memouts

and ultimately reduced coverage. One possible remedy is to alter the constraint that larger

rules always occur first and instead prefer rules where the soure and target subgraphs are of

similar order. When smaller rules occur before larger rules and their inputs are a subset of
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those of the larger rules, the smaller rules are all made optional. This selective relaxation

of rule optionality might be computationally less demanding than making all MWE rules

optional, but the task of choosing the appropriate optionality for the rules is significantly

more complex. These or other changes to the rule ordering and optionality are applicable

for both the LPA and SGA methods.

Further DMRS Simplifications In Section 5.7 I discussed several simplifications of

DMRS representations, but noted that I do not convert binary nodes to links as described in

Section 5.7.3. This last simplication has the potential to significantly reduce the complexity

of the graphs and, as there are relatively few of these nodes occurring frequently, it would

only slightly increase the entropy of edge labels. The simplification as described in reversible,

so after the subgraph pairs have been extracted I can reify those edges into nodes in order to

create the MRS transfer rules. This change, and any other potential graph simplifications,

could apply to both LPA and SGA.

Rooted Enumeration in SGA For SGA I use the rooted traversal to get singly-rooted

graphs, but I then use a depth-limited traversal for enumeration. The depth-limited traversal

includes all nodes at each depth level and was initially created to avoid enumerating too many

subgraph variations, but depth alone is not a useful metric for finding subgraphs that capture

interesting semantic phenomena. An enumeration based on the rooted traversal might yield

more semantically-coherent graphs. For instance, a first pass may extract subgraphs found by

traversing only the to-oriented links at various depths, which capture the main arguments of a

clause. A second pass would then extract order-2 subgraphs including two nodes connected by

a from-oriented link, which captures basic modification or quantification. If the modifiers or

quantifiers themselves have more complicated sub-structures, these should be captured in the

first pass. A method such as this would benefit from the binary-node DMRS simplification

discussed above.



225

EM Rule Weighting for SGA Expectation-Maximization (EM) is a learning technique

used by word aligners such as Giza++(Och and Ney, 2003) that iteratively converges on an

optimal alignment, unlike my weighted-ϕ2 method for SGA which calculates weights based

on a single pass of the data. EM should help avoid more false-positive alignments than my

current method.

Subgraph Interpolation One problem in SGA is that the larger subgraph pairs, particu-

larly those involving rare predicates, get assigned the same probability as smaller subgraphs

involving the same rare predicates, as the subgraph pairs are equally rare. The assigned

probability would be the same whether or not any other less-rare portions of the subgraphs

are translationally equivalent. Both LPA and SGA find subgraph pairs of various sizes

and many of the smaller subgraphs of the original graph are also subgraphs the larger sub-

graphs.12 I can use this fact to interpolate the smaller subgraphs as components of the larger

ones, similar to graph composition in graph grammars (e.g., Jones et al., 2012; Groschwitz

et al., 2015). Comparisons of the translation probabilities between alternative components,

or between components and the larger subgraphs, can possibly help me detect when the

source and target are translationally inequivalent.

Improved Bilingual Variable Binding In Chapter 11 I concluded that two of the main

issues in my methodology are the shortcomings in bilingual variable binding and the lack

of any sophisticated transfer reranker. For the former, the use of Moses alignments (dis-

cussed above) could help, particularly for the non-isomorphic subgraph pairs or for linguistic

divergences (see Section 1.1) that do not coincide with structural differences in the seman-

tics. SGA cannot make use of Moses alignments, but through subgraph interpolation (see

above) it could find the most likely alignments of sub-subgraphs—a method that could also

be employed for LPA.

12For example, a graph has nodes {a, b, c}, one extracted subgraph has nodes {a, b}, and another subgraph
has just node {a}.
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Automatic Post-transfer Editing I did not incorporate any code to clean up transfer

results, although such modifications could yield benefits for translation coverage and qual-

ity. For example, all named entities currently need a transfer rule in order to be translated

properly, but many could be handled with a more general system that uses an external tool

to Romanize Japanese names and otherwise leave the semantics unchanged, aside from strip-

ping the ja: prefix. Such a system might detect a node (x1 / ja:named :carg "坂下")

and output (x1 / named :carg "Sakashita"). These changes would be specific to the

Japanese–English task and not necessarily generalizable to other language pairs.

Intermediate Result Ranking and End-to-end Ranking My translation pipeline only

keeps the top five parse results and transfer results per parse and the top twenty generation

results per transfer, relying on the ranking provided by the grammmar and the ACE pro-

cessor. The ERG’s parse ranking is good and its ranking model is updated regularly, but

Jacy’s ranking model has not been updated in almost a decade, during which time there have

been significant changes to the grammar, so it often produces suboptimal parses before the

preferred ones. Transfer results are ordered depending on the transfer rule ordering which

depends on the size of the input pattern and translation probability associated with the rule

(see Section 7.2.2), but there is no ranking of the final transfer results. Generation results

are ordered according to the same model as for parsing, but with ACE there is no reranking

based on an n-gram language model. The lack of n-gram reranking can hurt the fluency

of the outputs and their performance against n-gram metrics such as BLEU. My systems

would likely benefit greatly by updating Jacy’s parse ranking model and integrating transfer

rankers, n-gram realization rankers, and end-to-end rerankers as described by Velldal (2008).

Integrating an n-gram realization ranker should also help to bring the results of First selec-

tion up closer to the level of those from Oracle selection, which is important for any practical

application of the translation system where there is no reference string for comparison.

In addition, I currently have no way of detecting if I arrive at the same (i.e., duplicate)

transfer output for different parse results of an item. The same is true of generation results.
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My method of selecting the top five or twenty outputs at each step could be improved so

that the outputs across branches are compared for duplicates. I store all outputs of each step

in a single file (see Section 4.2), so I could initially output more results than I currently do

(e.g., 50 transfers per parse result) and subsequently filter them to only keep the first five per

parse result that are not duplicated for other parse results of the same item. Alternatively,

I could filter them to keep the first N unique results across all transfer results for the same

item, effectively implementing a beam search. These strategies would also be relevant and

perhaps more helpful for realization results, which currently have many duplicates.

Neural Parsing, Transfer, and Generation The ERG is currently able to generate

sentences for most well-formed inputs, but the outputs of transfer are not as clean or as well-

formed as the outputs of parsing with the ERG, so currently less than half of the transfer

results from my systems are covered in generation. A robust graph-to-string approach would

be able to gain the remaining coverage, but the gained items may have lower quality than

those that already covered because they are more likely to have ill-formed or incomplete

semantic representations. Some recent work applies the Hiero machine translation system

(Chiang, 2007) to perform DMRS-to-string transformation both for translation and robust

monolingual realization (Horvat et al., 2015; Horvat, 2017). Buys and Blunsom (2017) built

a neural encoder-decoder transition-based parser that produces DMRS directly from strings

(i.e., without a grammar, although DeepBank (Flickinger et al., 2012), used for training,

was produced by a grammar) and Konstas et al. (2017) achieved state-of-the-art results in

generating sentences from AMR by applying a seq2seq model based on OpenNMT (Klein

et al., 2017) with additions for handling anonymization and AMR syntax. I collaborated

with Ioannis Konstas (of Konstas et al. 2017) to adapt their method to Penman-serialized

DMRS representations and the initial results were very encouraging. Beyond just gaining

coverage, these techniques integrate language models which would also help in getting fluent

realizations. The success of Buys and Blunsom (2017) and Konstas et al. (2017) inspires me

to consider neural transfer as the last step in creating a robust translation pipeline based
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on DMRS. In this case, grammars such as the ERG and Jacy would produce the gold- or

silver-standard bisem data that the systems use for training.

12.3 Closing Words

The work I have presented advances an alternative paradigm to machine translation than

the purely statistical or neural approaches that are more commonly pursued in recent years,

thereby expanding the variety of translation results available. Given that the task of trans-

lation is the transformation of source into target sentences with equivalent meaning, the

use of a meaning representation rather than surface representations as the medium of that

transformation is thus a direct, and intrinsically satisfying, solution to the problem. The

transfer of compositional and symbolic semantic representations and the use of precision

grammars for analysis and realization makes the translation process very interpretable and

inspectable; failures (or successes) in translation can be traced back to specific rules, which

can help developers understand how to improve the system. The ability to select alternate

parse, transfer, and realization results enables room for customization where ranking models,

e.g., trained for specific genres, are available. The LOGON transfer machinery is very pow-

erful and my results were achieved using only a fraction of its capabilities, so improvements

to my methodology to target the remaining capabilities (such as rule context or filters),

in addition to the improvements discussed above, would lead to a compelling platform for

experimentation in semantics-based machine translation.
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Appendix A

SETTING UP THE TRANSLATION ENVIRONMENT

In this appendix I detail the configurations of two parts of my system. In Appendix A.1

I list the experimental configuration I used for my baseline Moses system. In Appendix A.2

I list the customizations I made for the 1214 version of the ERG. All other configuration for

my experiments is detailed at the XMT project1 at:

https://github.com/goodmami/xmt/tree/master/doc.

A.1 Moses

Moses2 is available at https://github.com/moses-smt/mosesdecoder. Below I list the

script I use with Moses 4.0’s Experiment Management System (EMS).

[GENERAL]
# environment directories (set as appropriate)
working -dir = /projects/moses -baseline
moses -dir = /NLP_TOOLS/mt_tools/moses/v4.0
external -bin-dir = /NLP_TOOLS/mt_tools/mgizapp/latest/bin
# data directories
input -extension = jp
output -extension = en
pair-extension = jp-en
bitext -dir = $working -dir/bitext
# moses directories
moses -src-dir = $moses -dir
moses -bin-dir = $moses -dir/bin
moses -script -dir = $moses -dir/scripts
decoder = $moses -bin-dir/moses
ttable -binarizer = "$moses -bin-dir/CreateOnDiskPt 1 1 4 100 2"
output -tokenizer = "$moses -script -dir/tokenizer/tokenizer.perl -a

-l $output -extension"
output -truecaser = $moses -script -dir/recaser/truecase.perl

1https://github.com/goodmami/xmt
2http://www.statmt.org/moses

https://github.com/goodmami/xmt/tree/master/doc
https://github.com/moses-smt/mosesdecoder
https://github.com/goodmami/xmt
http://www.statmt.org/moses
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detruecaser = $moses -script -dir/recaser/detruecase.perl

[CORPUS]
max-sentence -length = 70

[CORPUS:kw-tc-wn]
raw-stem = $bitext -dir/train

[LM]
# kenlm training
lm-training = "$moses -script -dir/ems/support/lmplz -wrapper.perl

-bin $moses -bin-dir/lmplz"
settings = "--prune '0 0 1' -T $working -dir/lm -S 20%"
order = 5
lm-binarizer = $moses -bin-dir/build_binary
type = 8

[LM:kw-tc-wn]
raw-corpus = $bitext -dir/train.$output -extension

[TRAINING]
script = $moses -script -dir/training/train -model.perl
training -options = "-mgiza -mgiza -cpus 4 -sort-buffer -size 8G

-sort-compress gzip"
parallel = yes
alignment -symmetrization -method = grow-diag-final -and
lexicalized -reordering = msd-bidirectional -fe
max-phrase -length = 5
score -settings = "--GoodTuring --MinScore 2:0.0001"

[TUNING]
tuning -script = $moses -script -dir/training/mert-moses.pl
tuning -settings = "-mertdir $moses -bin-dir"
raw-input = $bitext -dir/dev.$input -extension
raw-reference = $bitext -dir/dev.$output -extension
nbest = 100
filter -settings = ""
decoder -settings = "-threads $cores"

[TRUECASER]
trainer = $moses -script -dir/recaser/train -truecaser.perl

[EVALUATION]
decoder -settings = "-search -algorithm 1 -cube-pruning -pop-limit 5000

-s 5000 -threads $cores"
multi -bleu = "$moses -script -dir/generic/multi -bleu.perl -lc"
multi -bleu-c = $moses -script -dir/generic/multi -bleu.perl
analysis = $moses -script -dir/ems/support/analysis.perl
analyze -coverage = yes
report -segmentation = yes
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[EVALUATION:kw-tc-wn]
raw-input = $bitext -dir/test.$input -extension
raw-reference = $bitext -dir/test.$output -extension

[REPORTING]
# no parameters to set

A.2 ERG

The 1214 version of the English Resource Grammar serves as the base version I use for

my experiments. While a compiled binary image of this grammar is available,3 there are a

few modifications I make for it to work better with transferred semantics as the input for

generation. I therefore use the source version, which can be obtained via Subversion:

~$ svn co http://svn.delph-in.net/erg/tags/1214 erg-1214
~$ cd erg-1214/

In the above session, I also changed the working directory to the freshly downloaded

erg-1214/ directory to assist in the following commands.

In this version of the ERG, the default semantic hierarchy (defined in the SEM-I) for quan-

tifiers is not sufficiently distinguished for transfer from Japanese. Specifically, the abstract

quantifier type does not distinguish articles from demonstratives, which leads to undesired

realizations. I therefore add some additional elements to the hierarchy so these can be prop-

erly distinguished. I do this by creating a new file (etc/jaen.smi) for the new definitions,

and by including the new file in the top-level SEM-I file.

~/erg-1214$ cat <<EOF > etc/jaen.smi
predicates:

def_udef_a_q < existential_q.
def_explicit_q < def_udef_a_q.
def_implicit_q < def_udef_a_q.
udef_q < def_udef_a_q.
_the_q < def_udef_a_q.
_a_q < def_udef_a_q.

EOF

3http://sweaglesw.org/linguistics/ace/download/erg-1214-x86-64-0.9.26.dat.bz2

http://sweaglesw.org/linguistics/ace/download/erg-1214-x86-64-0.9.26.dat.bz2
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~/erg-1214$ echo "include: jaen.smi" >> etc/erg.smi

There also exist lexical entries that may be output by the transfer grammar that are

not added to the ERG lexicon by default. These can be extracted with the mtr-to-lexicon

script of the XMT software. The resulting lexicon (jaen-lexicon.tdl below) must be added

to the grammar script, as well.

~/erg-1214$ ${XMTROOT}/scripts/mtr-to-lexicon.py --sem-i etc/erg.smi \
typemap.json ${JAENROOT}/jaen/single-selected.mtr \
> jaen-lexicon.tdl

~/erg-1214$ cat <<EOF >> english.tdl

;; Lexicon augmentations for JaEn transfer outputs.
:begin :instance :status lex-entry.
:include "jaen-lexicon".
:end :instance.
EOF

A bug exists in the 1214 version of the ERG where some constructions result in an

argument of *top* instead of a valid variable. This bug is fixed in the trunk branch of the

ERG, but not in the version I use. To fix it, replace [ ARG1 *top* ] with [ ARG1 semarg ]

in the definition of basic_arg01_relation.
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Appendix B

DATABASE SCHEMA

Here I describe the tables used to process my translation pipeline as described in Chap-

ter 4. There are four stages: input items, parsing, transfer, and generation. There is only one

table for items, but each of parsing, transfer, and generation have two tables: one with time

and memory information for each item (where such data is available from the processor),

and another with the results for each item, if any.

field description

i-id item id
i-input source sentence
i-length number of tokens in the source sentence
i-translation target (reference) sentence

Figure B.1: item Table

field description

i-id item id
time processing time (msec)
memory bytes of memory allocated

Figure B.2: p-info Table
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field description

i-id item id
p-id parse id
mrs source semantic representation
score parse reranker score

Figure B.3: p-result Table

field description

i-id item id
p-id parse id
time processing time (msec)
memory bytes of memory allocated

Figure B.4: x-info Table

field description

i-id item id
p-id parse id
x-id transfer id
mrs target semantic representation
score transfer reranker score

Figure B.5: x-result Table
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field description

i-id item id
p-id parse id
x-id transfer id
time processing time (msec)
memory bytes of memory allocated

Figure B.6: g-info Table

field description

i-id item id
p-id parse id
x-id transfer id
g-id realization id
surface target sentence
mrs fully specified target semantic representation
score parse reranker score

Figure B.7: g-result Table
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